File size: 1,540 Bytes
f4ec833
ee6c602
9ba2a32
ee6c602
 
 
 
49e706c
f4ec833
ee6c602
 
 
 
 
9ba2a32
ee6c602
8a773b5
ee6c602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a773b5
f4ec833
ee6c602
f4ec833
ee6c602
 
 
 
 
8a773b5
f4ec833
 
5350e2e
aaa37fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gradio as gr
from openai import OpenAI

# NVIDIA-compatible OpenAI client
client = OpenAI(
    base_url="https://integrate.api.nvidia.com/v1",
    api_key="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"
)

# System message
system_prompt = {
    "role": "system",
    "content": "You are a helpful assistant to answer user queries."
}

# Main chat function with memory from Gradio (OpenAI-style history)
def get_text_response(user_message, history):
    # Convert Gradio message history (OpenAI format) + new user message
    messages = [system_prompt] + history + [{"role": "user", "content": user_message}]

    # Stream response
    response = ""
    completion = client.chat.completions.create(
        model="nvidia/llama-3.1-nemotron-70b-instruct",
        messages=messages,
        temperature=0.5,
        top_p=1,
        max_tokens=1024,
        stream=True
    )

    for chunk in completion:
        delta = chunk.choices[0].delta
        if delta and delta.content:
            response += delta.content

    return response

# Gradio Chat UI
demo = gr.ChatInterface(
    fn=get_text_response,
    title="🧠 Nemotron 70B Assistant",
    theme="soft",
    chatbot=gr.Chatbot(height=400, type="messages"),  # <-- important: type="messages"
    textbox=gr.Textbox(placeholder="Ask me anything...", container=False),
    examples=["How are you doing?", "What are your interests?", "Which places do you like to visit?"]
)

if __name__ == "__main__":
    demo.queue().launch(share=True, debug=True)