Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,58 @@
|
|
1 |
import gradio as gr
|
2 |
-
from langchain_community.llms import HuggingFacePipeline
|
3 |
-
from langchain import LLMChain, PromptTemplate
|
4 |
-
from langchain.memory import ConversationBufferMemory
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
|
12 |
-
# Create pipeline
|
13 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=1000, do_sample=True)
|
14 |
|
15 |
# Wrap with HuggingFacePipeline
|
16 |
llm = HuggingFacePipeline(pipeline=pipe)
|
17 |
|
|
|
18 |
template = """You are a helpful assistant to answer user queries.
|
19 |
{chat_history}
|
20 |
User: {user_message}
|
21 |
Chatbot:"""
|
22 |
|
23 |
prompt = PromptTemplate(
|
24 |
-
input_variables=["chat_history", "user_message"],
|
|
|
25 |
)
|
26 |
|
27 |
-
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
memory=memory,
|
34 |
-
)
|
35 |
|
|
|
|
|
|
|
36 |
def get_text_response(user_message, history):
|
37 |
-
|
|
|
|
|
38 |
return response
|
39 |
|
|
|
40 |
demo = gr.ChatInterface(
|
41 |
-
get_text_response,
|
42 |
-
examples=["How are you doing?", "What are your interests?", "Which places do you like to visit?"]
|
|
|
|
|
|
|
43 |
)
|
44 |
|
45 |
-
|
46 |
if __name__ == "__main__":
|
47 |
demo.queue().launch(share=True, debug=True)
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
|
4 |
+
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
5 |
+
from langchain_core.prompts import PromptTemplate
|
6 |
+
from langchain_core.runnables import RunnableLambda
|
7 |
+
from langchain_community.memory import ConversationBufferMemory
|
8 |
+
|
9 |
+
# Load model and tokenizer
|
10 |
+
model_name = "microsoft/DialoGPT-medium"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
|
14 |
+
# Create text-generation pipeline
|
15 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=1000, do_sample=True, truncation=True)
|
16 |
|
17 |
# Wrap with HuggingFacePipeline
|
18 |
llm = HuggingFacePipeline(pipeline=pipe)
|
19 |
|
20 |
+
# Prompt Template
|
21 |
template = """You are a helpful assistant to answer user queries.
|
22 |
{chat_history}
|
23 |
User: {user_message}
|
24 |
Chatbot:"""
|
25 |
|
26 |
prompt = PromptTemplate(
|
27 |
+
input_variables=["chat_history", "user_message"],
|
28 |
+
template=template
|
29 |
)
|
30 |
|
31 |
+
# Memory (updated)
|
32 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=False)
|
33 |
|
34 |
+
# Create RunnableChain (recommended instead of deprecated LLMChain)
|
35 |
+
def generate_response(inputs):
|
36 |
+
formatted_prompt = prompt.format(**inputs)
|
37 |
+
return llm.invoke(formatted_prompt)
|
|
|
|
|
38 |
|
39 |
+
chain = RunnableLambda(generate_response)
|
40 |
+
|
41 |
+
# Gradio Chat Handler
|
42 |
def get_text_response(user_message, history):
|
43 |
+
chat_history = "\n".join([f"User: {msg[0]}\nChatbot: {msg[1]}" for msg in history]) if history else ""
|
44 |
+
inputs = {"chat_history": chat_history, "user_message": user_message}
|
45 |
+
response = chain.invoke(inputs)
|
46 |
return response
|
47 |
|
48 |
+
# Gradio UI
|
49 |
demo = gr.ChatInterface(
|
50 |
+
fn=get_text_response,
|
51 |
+
examples=["How are you doing?", "What are your interests?", "Which places do you like to visit?"],
|
52 |
+
title="AI Chatbot",
|
53 |
+
description="A simple chatbot using LangChain + HuggingFace + Gradio",
|
54 |
+
theme="default"
|
55 |
)
|
56 |
|
|
|
57 |
if __name__ == "__main__":
|
58 |
demo.queue().launch(share=True, debug=True)
|