feat: Enhance blog data processing with utility functions
Browse files- Added utility functions for loading and processing blog posts in `utils_data_loading.ipynb`.
- Implemented a new notebook `update_blog_data.ipynb` for updating blog data and vector store.
- Updated `app.py` to utilize utility functions for loading vector stores, with fallback to direct initialization.
- Improved error handling and logging during vector store loading.
- Added new dependencies in `pyproject.toml` for notebook processing and utilities.
- Documented the new utilities and usage instructions in `BLOG_DATA_UTILS.md`.
- BLOG_DATA_UTILS.md +72 -0
- app.py +82 -20
- pyproject.toml +2 -0
- update_blog_data.ipynb +256 -0
- utils_data_loading.ipynb +454 -0
BLOG_DATA_UTILS.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Blog Data Utilities
|
2 |
+
|
3 |
+
This directory contains utilities for loading, processing, and maintaining blog post data for the RAG system.
|
4 |
+
|
5 |
+
## Available Tools
|
6 |
+
|
7 |
+
### `utils_data_loading.ipynb`
|
8 |
+
|
9 |
+
This notebook contains utility functions for:
|
10 |
+
- Loading blog posts from the data directory
|
11 |
+
- Processing and enriching metadata (adding URLs, titles, etc.)
|
12 |
+
- Getting statistics about the documents
|
13 |
+
- Creating and updating vector embeddings
|
14 |
+
- Loading existing vector stores
|
15 |
+
|
16 |
+
### `update_blog_data.ipynb`
|
17 |
+
|
18 |
+
This notebook demonstrates how to:
|
19 |
+
- Use the utility functions to update the blog data
|
20 |
+
- Process new blog posts
|
21 |
+
- Update the vector store
|
22 |
+
- Test the updated system with sample queries
|
23 |
+
- Track changes over time
|
24 |
+
|
25 |
+
## How to Use
|
26 |
+
|
27 |
+
### Updating Blog Data
|
28 |
+
|
29 |
+
When new blog posts are published, follow these steps:
|
30 |
+
|
31 |
+
1. Add the markdown files to the `data/` directory
|
32 |
+
2. Run the update notebook:
|
33 |
+
```bash
|
34 |
+
cd /home/mafzaal/source/lets-talk
|
35 |
+
uv run jupyter nbconvert --to notebook --execute update_blog_data.ipynb --output executed_update_$(date +%Y%m%d).ipynb
|
36 |
+
```
|
37 |
+
|
38 |
+
This will:
|
39 |
+
- Load all blog posts (including new ones)
|
40 |
+
- Update the vector embeddings
|
41 |
+
- Save statistics for tracking
|
42 |
+
|
43 |
+
### Customizing the Process
|
44 |
+
|
45 |
+
You can customize the process by editing the `.env` file:
|
46 |
+
|
47 |
+
```
|
48 |
+
DATA_DIR=data/ # Directory containing blog posts
|
49 |
+
VECTOR_STORAGE_PATH=./db/vectorstore_v3 # Path to vector store
|
50 |
+
EMBEDDING_MODEL=Snowflake/snowflake-arctic-embed-l # Embedding model
|
51 |
+
QDRANT_COLLECTION=thedataguy_documents # Collection name
|
52 |
+
BLOG_BASE_URL=https://thedataguy.pro/blog/ # Base URL for blog
|
53 |
+
FORCE_RECREATE_EMBEDDINGS=false # Whether to force recreation
|
54 |
+
```
|
55 |
+
|
56 |
+
### In the Chainlit App
|
57 |
+
|
58 |
+
The Chainlit app (`app.py`) has been updated to use these utility functions if available. It falls back to direct initialization if they can't be loaded.
|
59 |
+
|
60 |
+
## Adding Custom Processing
|
61 |
+
|
62 |
+
To add custom processing for blog posts:
|
63 |
+
|
64 |
+
1. Edit the `update_document_metadata` function in `utils_data_loading.ipynb`
|
65 |
+
2. Add any additional enrichment or processing steps
|
66 |
+
3. Update the vector store using the `update_blog_data.ipynb` notebook
|
67 |
+
|
68 |
+
## Future Improvements
|
69 |
+
|
70 |
+
- Add support for incremental updates (only process new posts)
|
71 |
+
- Add webhook support to automatically update when new posts are published
|
72 |
+
- Add tracking of embedding models and versions
|
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import os
|
2 |
import getpass
|
|
|
|
|
3 |
from pathlib import Path
|
4 |
from operator import itemgetter
|
5 |
from dotenv import load_dotenv
|
@@ -16,23 +18,68 @@ from langchain_qdrant import QdrantVectorStore
|
|
16 |
from qdrant_client import QdrantClient
|
17 |
from qdrant_client.http.models import Distance, VectorParams
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
|
38 |
# Create a retriever
|
@@ -97,14 +144,29 @@ async def on_message(message: cl.Message):
|
|
97 |
# Get chain from user session
|
98 |
chain = cl.user_session.get("chain")
|
99 |
|
100 |
-
print(
|
101 |
# Call the chain with the user message
|
102 |
-
response =
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
# Send the response with sources
|
106 |
await cl.Message(
|
107 |
content=response["response"].content,
|
108 |
-
|
109 |
).send()
|
110 |
|
|
|
1 |
import os
|
2 |
import getpass
|
3 |
+
import sys
|
4 |
+
import importlib.util
|
5 |
from pathlib import Path
|
6 |
from operator import itemgetter
|
7 |
from dotenv import load_dotenv
|
|
|
18 |
from qdrant_client import QdrantClient
|
19 |
from qdrant_client.http.models import Distance, VectorParams
|
20 |
|
21 |
+
# Import utility functions from the notebook
|
22 |
+
def import_notebook_functions(notebook_path):
|
23 |
+
"""Import functions from a Jupyter notebook"""
|
24 |
+
import nbformat
|
25 |
+
from importlib.util import spec_from_loader, module_from_spec
|
26 |
+
from IPython.core.interactiveshell import InteractiveShell
|
27 |
+
|
28 |
+
# Create a module
|
29 |
+
module_name = Path(notebook_path).stem
|
30 |
+
spec = spec_from_loader(module_name, loader=None)
|
31 |
+
module = module_from_spec(spec)
|
32 |
+
sys.modules[module_name] = module
|
33 |
+
|
34 |
+
# Read the notebook
|
35 |
+
with open(notebook_path) as f:
|
36 |
+
nb = nbformat.read(f, as_version=4)
|
37 |
+
|
38 |
+
# Execute code cells
|
39 |
+
shell = InteractiveShell.instance()
|
40 |
+
for cell in nb.cells:
|
41 |
+
if cell.cell_type == 'code':
|
42 |
+
# Skip example code
|
43 |
+
if 'if __name__ == "__main__":' in cell.source:
|
44 |
+
continue
|
45 |
+
|
46 |
+
code = shell.input_transformer_manager.transform_cell(cell.source)
|
47 |
+
exec(code, module.__dict__)
|
48 |
+
|
49 |
+
return module
|
50 |
|
51 |
+
# Try to import utility functions if available
|
52 |
+
try:
|
53 |
+
utils = import_notebook_functions('utils_data_loading.ipynb')
|
54 |
+
|
55 |
+
# Load vector store using the utility function
|
56 |
+
vector_store = utils.load_vector_store(
|
57 |
+
storage_path=os.environ.get("VECTOR_STORAGE_PATH", "./db/vectorstore_v3"),
|
58 |
+
collection_name=os.environ.get("QDRANT_COLLECTION", "thedataguy_documents"),
|
59 |
+
embedding_model=os.environ.get("EMBEDDING_MODEL", "Snowflake/snowflake-arctic-embed-l")
|
60 |
+
)
|
61 |
+
|
62 |
+
print("Successfully loaded vector store using utility functions")
|
63 |
+
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Could not load utility functions: {e}")
|
66 |
+
print("Falling back to direct initialization")
|
67 |
+
|
68 |
+
# Get vector storage path from .env file with fallback
|
69 |
+
storage_path = Path(os.environ.get("VECTOR_STORAGE_PATH", "./db/vectorstore_v3"))
|
70 |
+
|
71 |
+
# Load embedding model from environment variable with fallback
|
72 |
+
embedding_model = os.environ.get("EMBEDDING_MODEL", "Snowflake/snowflake-arctic-embed-l")
|
73 |
+
huggingface_embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
74 |
+
|
75 |
+
# Set up Qdrant vectorstore from existing collection
|
76 |
+
collection_name = os.environ.get("QDRANT_COLLECTION", "thedataguy_documents")
|
77 |
+
|
78 |
+
vector_store = QdrantVectorStore.from_existing_collection(
|
79 |
+
path=storage_path,
|
80 |
+
collection_name=collection_name,
|
81 |
+
embedding=huggingface_embeddings,
|
82 |
+
)
|
83 |
|
84 |
|
85 |
# Create a retriever
|
|
|
144 |
# Get chain from user session
|
145 |
chain = cl.user_session.get("chain")
|
146 |
|
147 |
+
print(message.content)
|
148 |
# Call the chain with the user message
|
149 |
+
response = chain.invoke({"question": message.content})
|
150 |
+
|
151 |
+
# Get the sources to display them
|
152 |
+
sources = []
|
153 |
+
for doc in response["context"]:
|
154 |
+
if "url" in doc.metadata:
|
155 |
+
# Get title from post_title metadata if available, otherwise derive from URL
|
156 |
+
title = doc.metadata.get("post_title", "")
|
157 |
+
if not title:
|
158 |
+
title = doc.metadata["url"].split("/")[-2].replace("-", " ").title()
|
159 |
+
|
160 |
+
sources.append(
|
161 |
+
cl.Source(
|
162 |
+
url=doc.metadata["url"],
|
163 |
+
title=title
|
164 |
+
)
|
165 |
+
)
|
166 |
|
167 |
# Send the response with sources
|
168 |
await cl.Message(
|
169 |
content=response["response"].content,
|
170 |
+
sources=sources
|
171 |
).send()
|
172 |
|
pyproject.toml
CHANGED
@@ -7,6 +7,7 @@ requires-python = ">=3.13"
|
|
7 |
dependencies = [
|
8 |
"chainlit>=2.5.5",
|
9 |
"ipykernel>=6.29.5",
|
|
|
10 |
"langchain>=0.3.25",
|
11 |
"langchain-community>=0.3.23",
|
12 |
"langchain-core>=0.3.59",
|
@@ -14,6 +15,7 @@ dependencies = [
|
|
14 |
"langchain-openai>=0.3.16",
|
15 |
"langchain-qdrant>=0.2.0",
|
16 |
"langchain-text-splitters>=0.3.8",
|
|
|
17 |
"pandas>=2.2.3",
|
18 |
"python-dotenv>=1.1.0",
|
19 |
"qdrant-client>=1.14.2",
|
|
|
7 |
dependencies = [
|
8 |
"chainlit>=2.5.5",
|
9 |
"ipykernel>=6.29.5",
|
10 |
+
"ipython>=9.2.0",
|
11 |
"langchain>=0.3.25",
|
12 |
"langchain-community>=0.3.23",
|
13 |
"langchain-core>=0.3.59",
|
|
|
15 |
"langchain-openai>=0.3.16",
|
16 |
"langchain-qdrant>=0.2.0",
|
17 |
"langchain-text-splitters>=0.3.8",
|
18 |
+
"nbformat>=5.10.4",
|
19 |
"pandas>=2.2.3",
|
20 |
"python-dotenv>=1.1.0",
|
21 |
"qdrant-client>=1.14.2",
|
update_blog_data.ipynb
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "b1a955e7",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Update Blog Data\n",
|
9 |
+
"\n",
|
10 |
+
"This notebook demonstrates how to update the blog data and vector store when new blog posts are published. It uses the utility functions from `utils_data_loading.ipynb`."
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"id": "6ec048b4",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import sys\n",
|
21 |
+
"import os\n",
|
22 |
+
"from pathlib import Path\n",
|
23 |
+
"from dotenv import load_dotenv\n",
|
24 |
+
"import importlib.util\n",
|
25 |
+
"\n",
|
26 |
+
"# Load environment variables\n",
|
27 |
+
"load_dotenv()\n",
|
28 |
+
"\n",
|
29 |
+
"# Import utility functions from utils_data_loading.ipynb\n",
|
30 |
+
"# We'll do this by first converting the notebook to a Python module"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": null,
|
36 |
+
"id": "7f01d61f",
|
37 |
+
"metadata": {},
|
38 |
+
"outputs": [],
|
39 |
+
"source": [
|
40 |
+
"# Function to import the utility module\n",
|
41 |
+
"def import_notebook_as_module(notebook_path, module_name=\"utils_module\"):\n",
|
42 |
+
" \"\"\"\n",
|
43 |
+
" Import a Jupyter notebook as a Python module.\n",
|
44 |
+
" \n",
|
45 |
+
" Args:\n",
|
46 |
+
" notebook_path: Path to the notebook\n",
|
47 |
+
" module_name: Name to give the module\n",
|
48 |
+
" \n",
|
49 |
+
" Returns:\n",
|
50 |
+
" The imported module\n",
|
51 |
+
" \"\"\"\n",
|
52 |
+
" import nbformat\n",
|
53 |
+
" from importlib.util import spec_from_loader, module_from_spec\n",
|
54 |
+
" from IPython.core.interactiveshell import InteractiveShell\n",
|
55 |
+
" \n",
|
56 |
+
" shell = InteractiveShell.instance()\n",
|
57 |
+
" \n",
|
58 |
+
" with open(notebook_path) as f:\n",
|
59 |
+
" nb = nbformat.read(f, as_version=4)\n",
|
60 |
+
" \n",
|
61 |
+
" # Create a module\n",
|
62 |
+
" spec = spec_from_loader(module_name, loader=None)\n",
|
63 |
+
" module = module_from_spec(spec)\n",
|
64 |
+
" sys.modules[module_name] = module\n",
|
65 |
+
" \n",
|
66 |
+
" # Execute only the code cells in the notebook\n",
|
67 |
+
" for cell in nb.cells:\n",
|
68 |
+
" if cell.cell_type == 'code':\n",
|
69 |
+
" # Skip cells that start with certain keywords like \"if __name__ == \"__main__\":\"\n",
|
70 |
+
" if 'if __name__ == \"__main__\":' in cell.source:\n",
|
71 |
+
" continue\n",
|
72 |
+
" \n",
|
73 |
+
" # Execute the cell and store its content in the module\n",
|
74 |
+
" code = shell.input_transformer_manager.transform_cell(cell.source)\n",
|
75 |
+
" exec(code, module.__dict__)\n",
|
76 |
+
" \n",
|
77 |
+
" return module"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": null,
|
83 |
+
"id": "774c1373",
|
84 |
+
"metadata": {},
|
85 |
+
"outputs": [],
|
86 |
+
"source": [
|
87 |
+
"# Import the utility functions\n",
|
88 |
+
"utils = import_notebook_as_module('utils_data_loading.ipynb')\n",
|
89 |
+
"\n",
|
90 |
+
"# Now you can access all the functions from the utils module\n",
|
91 |
+
"print(\"Successfully imported utility functions.\")"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"cell_type": "markdown",
|
96 |
+
"id": "85ae6617",
|
97 |
+
"metadata": {},
|
98 |
+
"source": [
|
99 |
+
"## Configuration\n",
|
100 |
+
"\n",
|
101 |
+
"Set up the configuration for data processing."
|
102 |
+
]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "code",
|
106 |
+
"execution_count": null,
|
107 |
+
"id": "54e9ca48",
|
108 |
+
"metadata": {},
|
109 |
+
"outputs": [],
|
110 |
+
"source": [
|
111 |
+
"# Configuration (can be overridden from .env file)\n",
|
112 |
+
"DATA_DIR = os.environ.get(\"DATA_DIR\", \"data/\")\n",
|
113 |
+
"VECTOR_STORAGE_PATH = os.environ.get(\"VECTOR_STORAGE_PATH\", \"./db/vectorstore_v3\")\n",
|
114 |
+
"BLOG_BASE_URL = os.environ.get(\"BLOG_BASE_URL\", \"https://thedataguy.pro/blog/\")\n",
|
115 |
+
"FORCE_RECREATE_EMBEDDINGS = os.environ.get(\"FORCE_RECREATE_EMBEDDINGS\", \"false\").lower() == \"true\"\n",
|
116 |
+
"\n",
|
117 |
+
"print(f\"Data Directory: {DATA_DIR}\")\n",
|
118 |
+
"print(f\"Vector Storage Path: {VECTOR_STORAGE_PATH}\")\n",
|
119 |
+
"print(f\"Blog Base URL: {BLOG_BASE_URL}\")\n",
|
120 |
+
"print(f\"Force Recreate Embeddings: {FORCE_RECREATE_EMBEDDINGS}\")"
|
121 |
+
]
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"cell_type": "markdown",
|
125 |
+
"id": "cc19ab4c",
|
126 |
+
"metadata": {},
|
127 |
+
"source": [
|
128 |
+
"## Update Blog Data Process\n",
|
129 |
+
"\n",
|
130 |
+
"This process will:\n",
|
131 |
+
"1. Load existing blog posts\n",
|
132 |
+
"2. Process and update metadata\n",
|
133 |
+
"3. Create or update vector embeddings"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": null,
|
139 |
+
"id": "3d56f688",
|
140 |
+
"metadata": {},
|
141 |
+
"outputs": [],
|
142 |
+
"source": [
|
143 |
+
"# Process blog posts and create/update embeddings\n",
|
144 |
+
"result = utils.process_blog_posts(\n",
|
145 |
+
" data_dir=DATA_DIR,\n",
|
146 |
+
" create_embeddings=True,\n",
|
147 |
+
" force_recreate_embeddings=FORCE_RECREATE_EMBEDDINGS\n",
|
148 |
+
")\n",
|
149 |
+
"\n",
|
150 |
+
"# Access the documents and vector store\n",
|
151 |
+
"documents = result[\"documents\"]\n",
|
152 |
+
"stats = result[\"stats\"]\n",
|
153 |
+
"vector_store = result[\"vector_store\"]\n",
|
154 |
+
"\n",
|
155 |
+
"print(f\"\\nProcessed {len(documents)} blog posts\")\n",
|
156 |
+
"print(f\"Vector store created/updated at: {VECTOR_STORAGE_PATH}\")"
|
157 |
+
]
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"cell_type": "markdown",
|
161 |
+
"id": "ad3b2dca",
|
162 |
+
"metadata": {},
|
163 |
+
"source": [
|
164 |
+
"## Testing the Vector Store\n",
|
165 |
+
"\n",
|
166 |
+
"Let's test the vector store with a few queries to make sure it's working correctly."
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "code",
|
171 |
+
"execution_count": null,
|
172 |
+
"id": "8b552e6b",
|
173 |
+
"metadata": {},
|
174 |
+
"outputs": [],
|
175 |
+
"source": [
|
176 |
+
"# Create a retriever from the vector store\n",
|
177 |
+
"retriever = vector_store.as_retriever(search_kwargs={\"k\": 2})\n",
|
178 |
+
"\n",
|
179 |
+
"# Test queries\n",
|
180 |
+
"test_queries = [\n",
|
181 |
+
" \"What is RAGAS?\",\n",
|
182 |
+
" \"How to build research agents?\",\n",
|
183 |
+
" \"What is metric driven development?\",\n",
|
184 |
+
" \"Who is TheDataGuy?\"\n",
|
185 |
+
"]\n",
|
186 |
+
"\n",
|
187 |
+
"for query in test_queries:\n",
|
188 |
+
" print(f\"\\nQuery: {query}\")\n",
|
189 |
+
" docs = retriever.invoke(query)\n",
|
190 |
+
" print(f\"Retrieved {len(docs)} documents:\")\n",
|
191 |
+
" for i, doc in enumerate(docs):\n",
|
192 |
+
" title = doc.metadata.get(\"post_title\", \"Unknown\")\n",
|
193 |
+
" url = doc.metadata.get(\"url\", \"No URL\")\n",
|
194 |
+
" print(f\"{i+1}. {title} ({url})\")"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"cell_type": "markdown",
|
199 |
+
"id": "ddbe9282",
|
200 |
+
"metadata": {},
|
201 |
+
"source": [
|
202 |
+
"## Schedule This Notebook\n",
|
203 |
+
"\n",
|
204 |
+
"To keep the blog data up-to-date, you can schedule this notebook to run periodically. \n",
|
205 |
+
"Here are some options:\n",
|
206 |
+
"\n",
|
207 |
+
"1. Use a cron job to run this notebook with papermill\n",
|
208 |
+
"2. Set up a GitHub Action to run this notebook on a schedule\n",
|
209 |
+
"3. Use Airflow or another workflow management system\n",
|
210 |
+
"\n",
|
211 |
+
"Example of running with papermill:\n",
|
212 |
+
"```bash\n",
|
213 |
+
"papermill update_blog_data.ipynb output_$(date +%Y%m%d).ipynb\n",
|
214 |
+
"```"
|
215 |
+
]
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"cell_type": "code",
|
219 |
+
"execution_count": null,
|
220 |
+
"id": "3634e064",
|
221 |
+
"metadata": {},
|
222 |
+
"outputs": [],
|
223 |
+
"source": [
|
224 |
+
"# Save stats to a file for tracking changes over time\n",
|
225 |
+
"import json\n",
|
226 |
+
"from datetime import datetime\n",
|
227 |
+
"\n",
|
228 |
+
"stats_dir = Path(\"stats\")\n",
|
229 |
+
"stats_dir.mkdir(exist_ok=True)\n",
|
230 |
+
"\n",
|
231 |
+
"# Add timestamp to stats\n",
|
232 |
+
"stats[\"timestamp\"] = datetime.now().isoformat()\n",
|
233 |
+
"\n",
|
234 |
+
"# Save stats\n",
|
235 |
+
"stats_path = stats_dir / f\"blog_stats_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json\"\n",
|
236 |
+
"with open(stats_path, \"w\") as f:\n",
|
237 |
+
" json.dump(stats, f, indent=2)\n",
|
238 |
+
"\n",
|
239 |
+
"print(f\"Saved stats to {stats_path}\")"
|
240 |
+
]
|
241 |
+
}
|
242 |
+
],
|
243 |
+
"metadata": {
|
244 |
+
"kernelspec": {
|
245 |
+
"display_name": ".venv",
|
246 |
+
"language": "python",
|
247 |
+
"name": "python3"
|
248 |
+
},
|
249 |
+
"language_info": {
|
250 |
+
"name": "python",
|
251 |
+
"version": "3.13.2"
|
252 |
+
}
|
253 |
+
},
|
254 |
+
"nbformat": 4,
|
255 |
+
"nbformat_minor": 5
|
256 |
+
}
|
utils_data_loading.ipynb
ADDED
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "b31c2849",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Utility Functions for Blog Post Loading and Processing\n",
|
9 |
+
"\n",
|
10 |
+
"This notebook contains utility functions for loading blog posts from the data directory, processing their metadata, and creating vector embeddings for use in the RAG system."
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"id": "848b0a86",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import os\n",
|
21 |
+
"import json\n",
|
22 |
+
"from pathlib import Path\n",
|
23 |
+
"from typing import List, Dict, Any, Optional\n",
|
24 |
+
"\n",
|
25 |
+
"from langchain_community.document_loaders import DirectoryLoader\n",
|
26 |
+
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
27 |
+
"from langchain.schema.document import Document\n",
|
28 |
+
"from langchain_huggingface import HuggingFaceEmbeddings\n",
|
29 |
+
"from langchain_community.vectorstores import Qdrant\n",
|
30 |
+
"\n",
|
31 |
+
"from IPython.display import Markdown, display\n",
|
32 |
+
"from dotenv import load_dotenv\n",
|
33 |
+
"\n",
|
34 |
+
"# Load environment variables from .env file\n",
|
35 |
+
"load_dotenv()"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "markdown",
|
40 |
+
"id": "39e32435",
|
41 |
+
"metadata": {},
|
42 |
+
"source": [
|
43 |
+
"## Configuration\n",
|
44 |
+
"\n",
|
45 |
+
"Load configuration from environment variables or use defaults."
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": null,
|
51 |
+
"id": "5a6a5d6d",
|
52 |
+
"metadata": {},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"# Configuration with defaults\n",
|
56 |
+
"DATA_DIR = os.environ.get(\"DATA_DIR\", \"data/\")\n",
|
57 |
+
"VECTOR_STORAGE_PATH = os.environ.get(\"VECTOR_STORAGE_PATH\", \"./db/vectorstore_v3\")\n",
|
58 |
+
"EMBEDDING_MODEL = os.environ.get(\"EMBEDDING_MODEL\", \"Snowflake/snowflake-arctic-embed-l\")\n",
|
59 |
+
"QDRANT_COLLECTION = os.environ.get(\"QDRANT_COLLECTION\", \"thedataguy_documents\")\n",
|
60 |
+
"BLOG_BASE_URL = os.environ.get(\"BLOG_BASE_URL\", \"https://thedataguy.pro/blog/\")"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "markdown",
|
65 |
+
"id": "01454147",
|
66 |
+
"metadata": {},
|
67 |
+
"source": [
|
68 |
+
"## Utility Functions\n",
|
69 |
+
"\n",
|
70 |
+
"These functions handle the loading, processing, and storing of blog posts."
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": null,
|
76 |
+
"id": "25792cd5",
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [],
|
79 |
+
"source": [
|
80 |
+
"def load_blog_posts(data_dir: str = DATA_DIR, \n",
|
81 |
+
" glob_pattern: str = \"*.md\", \n",
|
82 |
+
" recursive: bool = True, \n",
|
83 |
+
" show_progress: bool = True) -> List[Document]:\n",
|
84 |
+
" \"\"\"\n",
|
85 |
+
" Load blog posts from the specified directory.\n",
|
86 |
+
" \n",
|
87 |
+
" Args:\n",
|
88 |
+
" data_dir: Directory containing the blog posts\n",
|
89 |
+
" glob_pattern: Pattern to match files\n",
|
90 |
+
" recursive: Whether to search subdirectories\n",
|
91 |
+
" show_progress: Whether to show a progress bar\n",
|
92 |
+
" \n",
|
93 |
+
" Returns:\n",
|
94 |
+
" List of Document objects containing the blog posts\n",
|
95 |
+
" \"\"\"\n",
|
96 |
+
" text_loader = DirectoryLoader(\n",
|
97 |
+
" data_dir, \n",
|
98 |
+
" glob=glob_pattern, \n",
|
99 |
+
" show_progress=show_progress,\n",
|
100 |
+
" recursive=recursive\n",
|
101 |
+
" )\n",
|
102 |
+
" \n",
|
103 |
+
" documents = text_loader.load()\n",
|
104 |
+
" print(f\"Loaded {len(documents)} documents from {data_dir}\")\n",
|
105 |
+
" return documents"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "code",
|
110 |
+
"execution_count": null,
|
111 |
+
"id": "e7ddba72",
|
112 |
+
"metadata": {},
|
113 |
+
"outputs": [],
|
114 |
+
"source": [
|
115 |
+
"def update_document_metadata(documents: List[Document], \n",
|
116 |
+
" data_dir_prefix: str = DATA_DIR,\n",
|
117 |
+
" blog_base_url: str = BLOG_BASE_URL,\n",
|
118 |
+
" remove_suffix: str = \"index.md\") -> List[Document]:\n",
|
119 |
+
" \"\"\"\n",
|
120 |
+
" Update the metadata of documents to include URL and other information.\n",
|
121 |
+
" \n",
|
122 |
+
" Args:\n",
|
123 |
+
" documents: List of Document objects to update\n",
|
124 |
+
" data_dir_prefix: Prefix to replace in source paths\n",
|
125 |
+
" blog_base_url: Base URL for the blog posts\n",
|
126 |
+
" remove_suffix: Suffix to remove from paths (like index.md)\n",
|
127 |
+
" \n",
|
128 |
+
" Returns:\n",
|
129 |
+
" Updated list of Document objects\n",
|
130 |
+
" \"\"\"\n",
|
131 |
+
" for doc in documents:\n",
|
132 |
+
" # Create URL from source path\n",
|
133 |
+
" doc.metadata[\"url\"] = doc.metadata[\"source\"].replace(data_dir_prefix, blog_base_url)\n",
|
134 |
+
" \n",
|
135 |
+
" # Remove index.md or other suffix if present\n",
|
136 |
+
" if remove_suffix and doc.metadata[\"url\"].endswith(remove_suffix):\n",
|
137 |
+
" doc.metadata[\"url\"] = doc.metadata[\"url\"][:-len(remove_suffix)]\n",
|
138 |
+
" \n",
|
139 |
+
" # Extract post title from the directory structure\n",
|
140 |
+
" path_parts = Path(doc.metadata[\"source\"]).parts\n",
|
141 |
+
" if len(path_parts) > 1:\n",
|
142 |
+
" # Use the directory name as post_slug\n",
|
143 |
+
" doc.metadata[\"post_slug\"] = path_parts[-2]\n",
|
144 |
+
" doc.metadata[\"post_title\"] = path_parts[-2].replace(\"-\", \" \").title()\n",
|
145 |
+
" \n",
|
146 |
+
" # Add document length as metadata\n",
|
147 |
+
" doc.metadata[\"content_length\"] = len(doc.page_content)\n",
|
148 |
+
" \n",
|
149 |
+
" return documents"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"execution_count": null,
|
155 |
+
"id": "e0dfe498",
|
156 |
+
"metadata": {},
|
157 |
+
"outputs": [],
|
158 |
+
"source": [
|
159 |
+
"def get_document_stats(documents: List[Document]) -> Dict[str, Any]:\n",
|
160 |
+
" \"\"\"\n",
|
161 |
+
" Get statistics about the documents.\n",
|
162 |
+
" \n",
|
163 |
+
" Args:\n",
|
164 |
+
" documents: List of Document objects\n",
|
165 |
+
" \n",
|
166 |
+
" Returns:\n",
|
167 |
+
" Dictionary with statistics\n",
|
168 |
+
" \"\"\"\n",
|
169 |
+
" stats = {\n",
|
170 |
+
" \"total_documents\": len(documents),\n",
|
171 |
+
" \"total_characters\": sum(len(doc.page_content) for doc in documents),\n",
|
172 |
+
" \"min_length\": min(len(doc.page_content) for doc in documents),\n",
|
173 |
+
" \"max_length\": max(len(doc.page_content) for doc in documents),\n",
|
174 |
+
" \"avg_length\": sum(len(doc.page_content) for doc in documents) / len(documents) if documents else 0,\n",
|
175 |
+
" }\n",
|
176 |
+
" \n",
|
177 |
+
" # Create a list of document info for analysis\n",
|
178 |
+
" doc_info = []\n",
|
179 |
+
" for doc in documents:\n",
|
180 |
+
" doc_info.append({\n",
|
181 |
+
" \"url\": doc.metadata.get(\"url\", \"\"),\n",
|
182 |
+
" \"source\": doc.metadata.get(\"source\", \"\"),\n",
|
183 |
+
" \"title\": doc.metadata.get(\"post_title\", \"\"),\n",
|
184 |
+
" \"text_length\": doc.metadata.get(\"content_length\", 0),\n",
|
185 |
+
" })\n",
|
186 |
+
" \n",
|
187 |
+
" stats[\"documents\"] = doc_info\n",
|
188 |
+
" return stats"
|
189 |
+
]
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"cell_type": "code",
|
193 |
+
"execution_count": null,
|
194 |
+
"id": "0ae139c0",
|
195 |
+
"metadata": {},
|
196 |
+
"outputs": [],
|
197 |
+
"source": [
|
198 |
+
"def display_document_stats(stats: Dict[str, Any]):\n",
|
199 |
+
" \"\"\"\n",
|
200 |
+
" Display document statistics in a readable format.\n",
|
201 |
+
" \n",
|
202 |
+
" Args:\n",
|
203 |
+
" stats: Dictionary with statistics from get_document_stats\n",
|
204 |
+
" \"\"\"\n",
|
205 |
+
" print(f\"Total Documents: {stats['total_documents']}\")\n",
|
206 |
+
" print(f\"Total Characters: {stats['total_characters']}\")\n",
|
207 |
+
" print(f\"Min Length: {stats['min_length']} characters\")\n",
|
208 |
+
" print(f\"Max Length: {stats['max_length']} characters\")\n",
|
209 |
+
" print(f\"Average Length: {stats['avg_length']:.2f} characters\")\n",
|
210 |
+
" \n",
|
211 |
+
" # Display documents as a table\n",
|
212 |
+
" import pandas as pd\n",
|
213 |
+
" if stats[\"documents\"]:\n",
|
214 |
+
" df = pd.DataFrame(stats[\"documents\"])\n",
|
215 |
+
" display(df)"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": null,
|
221 |
+
"id": "2dcf66b4",
|
222 |
+
"metadata": {},
|
223 |
+
"outputs": [],
|
224 |
+
"source": [
|
225 |
+
"def split_documents(documents: List[Document], \n",
|
226 |
+
" chunk_size: int = 1000, \n",
|
227 |
+
" chunk_overlap: int = 200) -> List[Document]:\n",
|
228 |
+
" \"\"\"\n",
|
229 |
+
" Split documents into chunks for better embedding and retrieval.\n",
|
230 |
+
" \n",
|
231 |
+
" Args:\n",
|
232 |
+
" documents: List of Document objects to split\n",
|
233 |
+
" chunk_size: Size of each chunk in characters\n",
|
234 |
+
" chunk_overlap: Overlap between chunks in characters\n",
|
235 |
+
" \n",
|
236 |
+
" Returns:\n",
|
237 |
+
" List of split Document objects\n",
|
238 |
+
" \"\"\"\n",
|
239 |
+
" text_splitter = RecursiveCharacterTextSplitter(\n",
|
240 |
+
" chunk_size=chunk_size,\n",
|
241 |
+
" chunk_overlap=chunk_overlap,\n",
|
242 |
+
" length_function=len,\n",
|
243 |
+
" )\n",
|
244 |
+
" \n",
|
245 |
+
" split_docs = text_splitter.split_documents(documents)\n",
|
246 |
+
" print(f\"Split {len(documents)} documents into {len(split_docs)} chunks\")\n",
|
247 |
+
" return split_docs"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": null,
|
253 |
+
"id": "527ad848",
|
254 |
+
"metadata": {},
|
255 |
+
"outputs": [],
|
256 |
+
"source": [
|
257 |
+
"def create_vector_store(documents: List[Document], \n",
|
258 |
+
" storage_path: str = VECTOR_STORAGE_PATH,\n",
|
259 |
+
" collection_name: str = QDRANT_COLLECTION,\n",
|
260 |
+
" embedding_model: str = EMBEDDING_MODEL,\n",
|
261 |
+
" force_recreate: bool = False) -> Qdrant:\n",
|
262 |
+
" \"\"\"\n",
|
263 |
+
" Create a vector store from documents.\n",
|
264 |
+
" \n",
|
265 |
+
" Args:\n",
|
266 |
+
" documents: List of Document objects to store\n",
|
267 |
+
" storage_path: Path to the vector store\n",
|
268 |
+
" collection_name: Name of the collection\n",
|
269 |
+
" embedding_model: Name of the embedding model\n",
|
270 |
+
" force_recreate: Whether to force recreation of the vector store\n",
|
271 |
+
" \n",
|
272 |
+
" Returns:\n",
|
273 |
+
" Qdrant vector store\n",
|
274 |
+
" \"\"\"\n",
|
275 |
+
" # Initialize the embedding model\n",
|
276 |
+
" embeddings = HuggingFaceEmbeddings(model_name=embedding_model)\n",
|
277 |
+
" \n",
|
278 |
+
" # Create the directory if it doesn't exist\n",
|
279 |
+
" storage_dir = Path(storage_path).parent\n",
|
280 |
+
" os.makedirs(storage_dir, exist_ok=True)\n",
|
281 |
+
" \n",
|
282 |
+
" # Check if vector store exists\n",
|
283 |
+
" vector_store_exists = Path(storage_path).exists() and not force_recreate\n",
|
284 |
+
" \n",
|
285 |
+
" if vector_store_exists:\n",
|
286 |
+
" print(f\"Loading existing vector store from {storage_path}\")\n",
|
287 |
+
" try:\n",
|
288 |
+
" vector_store = Qdrant(\n",
|
289 |
+
" path=storage_path,\n",
|
290 |
+
" embedding_function=embeddings,\n",
|
291 |
+
" collection_name=collection_name\n",
|
292 |
+
" )\n",
|
293 |
+
" return vector_store\n",
|
294 |
+
" except Exception as e:\n",
|
295 |
+
" print(f\"Error loading existing vector store: {e}\")\n",
|
296 |
+
" print(\"Creating new vector store...\")\n",
|
297 |
+
" force_recreate = True\n",
|
298 |
+
" \n",
|
299 |
+
" # Create new vector store\n",
|
300 |
+
" print(f\"Creating new vector store at {storage_path}\")\n",
|
301 |
+
" vector_store = Qdrant.from_documents(\n",
|
302 |
+
" documents=documents,\n",
|
303 |
+
" embedding=embeddings,\n",
|
304 |
+
" path=storage_path,\n",
|
305 |
+
" collection_name=collection_name,\n",
|
306 |
+
" )\n",
|
307 |
+
" \n",
|
308 |
+
" return vector_store"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"cell_type": "markdown",
|
313 |
+
"id": "c78f99fc",
|
314 |
+
"metadata": {},
|
315 |
+
"source": [
|
316 |
+
"## Example Usage\n",
|
317 |
+
"\n",
|
318 |
+
"Here's how to use these utility functions for processing blog posts."
|
319 |
+
]
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"cell_type": "code",
|
323 |
+
"execution_count": null,
|
324 |
+
"id": "132d32c6",
|
325 |
+
"metadata": {},
|
326 |
+
"outputs": [],
|
327 |
+
"source": [
|
328 |
+
"def process_blog_posts(data_dir: str = DATA_DIR,\n",
|
329 |
+
" create_embeddings: bool = True,\n",
|
330 |
+
" force_recreate_embeddings: bool = False):\n",
|
331 |
+
" \"\"\"\n",
|
332 |
+
" Complete pipeline to process blog posts and optionally create vector embeddings.\n",
|
333 |
+
" \n",
|
334 |
+
" Args:\n",
|
335 |
+
" data_dir: Directory containing the blog posts\n",
|
336 |
+
" create_embeddings: Whether to create vector embeddings\n",
|
337 |
+
" force_recreate_embeddings: Whether to force recreation of embeddings\n",
|
338 |
+
" \n",
|
339 |
+
" Returns:\n",
|
340 |
+
" Dictionary with data and vector store (if created)\n",
|
341 |
+
" \"\"\"\n",
|
342 |
+
" # Load documents\n",
|
343 |
+
" documents = load_blog_posts(data_dir)\n",
|
344 |
+
" \n",
|
345 |
+
" # Update metadata\n",
|
346 |
+
" documents = update_document_metadata(documents)\n",
|
347 |
+
" \n",
|
348 |
+
" # Get and display stats\n",
|
349 |
+
" stats = get_document_stats(documents)\n",
|
350 |
+
" display_document_stats(stats)\n",
|
351 |
+
" \n",
|
352 |
+
" result = {\n",
|
353 |
+
" \"documents\": documents,\n",
|
354 |
+
" \"stats\": stats,\n",
|
355 |
+
" \"vector_store\": None\n",
|
356 |
+
" }\n",
|
357 |
+
" \n",
|
358 |
+
" # Create vector store if requested\n",
|
359 |
+
" if create_embeddings:\n",
|
360 |
+
" vector_store = create_vector_store(\n",
|
361 |
+
" documents, \n",
|
362 |
+
" force_recreate=force_recreate_embeddings\n",
|
363 |
+
" )\n",
|
364 |
+
" result[\"vector_store\"] = vector_store\n",
|
365 |
+
" \n",
|
366 |
+
" return result"
|
367 |
+
]
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"cell_type": "code",
|
371 |
+
"execution_count": null,
|
372 |
+
"id": "266d4fb3",
|
373 |
+
"metadata": {},
|
374 |
+
"outputs": [],
|
375 |
+
"source": [
|
376 |
+
"# Example usage\n",
|
377 |
+
"if __name__ == \"__main__\":\n",
|
378 |
+
" # Process blog posts without creating embeddings\n",
|
379 |
+
" result = process_blog_posts(create_embeddings=False)\n",
|
380 |
+
" \n",
|
381 |
+
" # Example: Access the documents\n",
|
382 |
+
" print(f\"\\nDocument example: {result['documents'][0].metadata}\")\n",
|
383 |
+
" \n",
|
384 |
+
" # Create embeddings if needed\n",
|
385 |
+
" # result = process_blog_posts(create_embeddings=True)\n",
|
386 |
+
" \n",
|
387 |
+
" # Retriever example\n",
|
388 |
+
" # retriever = result[\"vector_store\"].as_retriever()\n",
|
389 |
+
" # query = \"What is RAGAS?\"\n",
|
390 |
+
" # docs = retriever.invoke(query, k=2)\n",
|
391 |
+
" # print(f\"\\nRetrieved {len(docs)} documents for query: {query}\")"
|
392 |
+
]
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"cell_type": "markdown",
|
396 |
+
"id": "22132649",
|
397 |
+
"metadata": {},
|
398 |
+
"source": [
|
399 |
+
"## Function for Loading Existing Vector Store\n",
|
400 |
+
"\n",
|
401 |
+
"This function can be used to load an existing vector store without reprocessing all blog posts."
|
402 |
+
]
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"cell_type": "code",
|
406 |
+
"execution_count": null,
|
407 |
+
"id": "c24e0c02",
|
408 |
+
"metadata": {},
|
409 |
+
"outputs": [],
|
410 |
+
"source": [
|
411 |
+
"def load_vector_store(storage_path: str = VECTOR_STORAGE_PATH,\n",
|
412 |
+
" collection_name: str = QDRANT_COLLECTION,\n",
|
413 |
+
" embedding_model: str = EMBEDDING_MODEL) -> Optional[Qdrant]:\n",
|
414 |
+
" \"\"\"\n",
|
415 |
+
" Load an existing vector store.\n",
|
416 |
+
" \n",
|
417 |
+
" Args:\n",
|
418 |
+
" storage_path: Path to the vector store\n",
|
419 |
+
" collection_name: Name of the collection\n",
|
420 |
+
" embedding_model: Name of the embedding model\n",
|
421 |
+
" \n",
|
422 |
+
" Returns:\n",
|
423 |
+
" Qdrant vector store or None if it doesn't exist\n",
|
424 |
+
" \"\"\"\n",
|
425 |
+
" # Initialize the embedding model\n",
|
426 |
+
" embeddings = HuggingFaceEmbeddings(model_name=embedding_model)\n",
|
427 |
+
" \n",
|
428 |
+
" # Check if vector store exists\n",
|
429 |
+
" if not Path(storage_path).exists():\n",
|
430 |
+
" print(f\"Vector store not found at {storage_path}\")\n",
|
431 |
+
" return None\n",
|
432 |
+
" \n",
|
433 |
+
" try:\n",
|
434 |
+
" vector_store = Qdrant(\n",
|
435 |
+
" path=storage_path,\n",
|
436 |
+
" embedding_function=embeddings,\n",
|
437 |
+
" collection_name=collection_name\n",
|
438 |
+
" )\n",
|
439 |
+
" print(f\"Loaded vector store from {storage_path}\")\n",
|
440 |
+
" return vector_store\n",
|
441 |
+
" except Exception as e:\n",
|
442 |
+
" print(f\"Error loading vector store: {e}\")\n",
|
443 |
+
" return None"
|
444 |
+
]
|
445 |
+
}
|
446 |
+
],
|
447 |
+
"metadata": {
|
448 |
+
"language_info": {
|
449 |
+
"name": "python"
|
450 |
+
}
|
451 |
+
},
|
452 |
+
"nbformat": 4,
|
453 |
+
"nbformat_minor": 5
|
454 |
+
}
|