Add initial implementation of chat application with environment variable support and vector storage integration
Browse files- .gitignore +1 -0
- README.md +22 -0
- app.py +110 -0
- chainlit.md +6 -0
- pyproject.toml +3 -0
.gitignore
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
data/
|
2 |
db/
|
|
|
3 |
|
4 |
# Byte-compiled / optimized / DLL files
|
5 |
__pycache__/
|
|
|
1 |
data/
|
2 |
db/
|
3 |
+
.chainlit/
|
4 |
|
5 |
# Byte-compiled / optimized / DLL files
|
6 |
__pycache__/
|
README.md
CHANGED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Welcome to TheDataGuy Chat! 👋
|
2 |
+
|
3 |
+
This is a Q&A chatbot powered by TheDataGuy blog posts. Ask questions about topics covered in the blog, such as:
|
4 |
+
|
5 |
+
- RAGAS and RAG evaluation
|
6 |
+
- Building research agents
|
7 |
+
- Metric-driven development
|
8 |
+
- Data science best practices
|
9 |
+
|
10 |
+
## How it works
|
11 |
+
|
12 |
+
Under the hood, this application uses:
|
13 |
+
|
14 |
+
1. **Snowflake Arctic Embeddings**: To convert text into vector representations
|
15 |
+
2. **Qdrant Vector Database**: To store and search for similar content
|
16 |
+
3. **GPT-4o-mini**: To generate helpful responses based on retrieved content
|
17 |
+
4. **LangChain**: For building the RAG workflow
|
18 |
+
5. **Chainlit**: For the chat interface
|
19 |
+
|
20 |
+
## Sources
|
21 |
+
|
22 |
+
All answers are generated based on content from [TheDataGuy blog](https://thedataguy.pro/blog/). Sources are shown for each response so you can read more about the topic.
|
app.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import getpass
|
3 |
+
from pathlib import Path
|
4 |
+
from operator import itemgetter
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
|
7 |
+
# Load environment variables from .env file
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
import chainlit as cl
|
11 |
+
from langchain.prompts import ChatPromptTemplate
|
12 |
+
from langchain.schema.runnable import RunnablePassthrough
|
13 |
+
from langchain_openai.chat_models import ChatOpenAI
|
14 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
15 |
+
from langchain_qdrant import QdrantVectorStore
|
16 |
+
from qdrant_client import QdrantClient
|
17 |
+
from qdrant_client.http.models import Distance, VectorParams
|
18 |
+
|
19 |
+
# Get vector storage path from .env file with fallback
|
20 |
+
storage_path = Path(os.environ.get("VECTOR_STORAGE_PATH", "./db/vectorstore_v3"))
|
21 |
+
#qclient = QdrantClient(storage_path)
|
22 |
+
|
23 |
+
# Load embedding model from environment variable with fallback
|
24 |
+
embedding_model = os.environ.get("EMBEDDING_MODEL", "Snowflake/snowflake-arctic-embed-l")
|
25 |
+
huggingface_embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
26 |
+
|
27 |
+
# Set up Qdrant vectorstore from existing collection
|
28 |
+
collection_name = os.environ.get("QDRANT_COLLECTION", "thedataguy_documents")
|
29 |
+
|
30 |
+
vector_store = QdrantVectorStore.from_existing_collection(
|
31 |
+
#client=qclient,
|
32 |
+
path=storage_path,
|
33 |
+
collection_name=collection_name,
|
34 |
+
embedding=huggingface_embeddings,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
# Create a retriever
|
39 |
+
retriever = vector_store.as_retriever()
|
40 |
+
|
41 |
+
# Set up ChatOpenAI with environment variables
|
42 |
+
llm_model = os.environ.get("LLM_MODEL", "gpt-4o-mini")
|
43 |
+
temperature = float(os.environ.get("TEMPERATURE", "0"))
|
44 |
+
llm = ChatOpenAI(model=llm_model, temperature=temperature)
|
45 |
+
|
46 |
+
# Create RAG prompt template
|
47 |
+
rag_prompt_template = """\
|
48 |
+
You are a helpful assistant that answers questions based on the context provided.
|
49 |
+
Generate a concise answer to the question in markdown format and include a list of relevant links to the context.
|
50 |
+
Use links from context to help user to navigate to to find more information.
|
51 |
+
You have access to the following information:
|
52 |
+
|
53 |
+
Context:
|
54 |
+
{context}
|
55 |
+
|
56 |
+
Question:
|
57 |
+
{question}
|
58 |
+
|
59 |
+
If context is unrelated to question, say "I don't know".
|
60 |
+
"""
|
61 |
+
|
62 |
+
rag_prompt = ChatPromptTemplate.from_template(rag_prompt_template)
|
63 |
+
|
64 |
+
# Create chain
|
65 |
+
retrieval_augmented_qa_chain = (
|
66 |
+
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
|
67 |
+
| RunnablePassthrough.assign(context=itemgetter("context"))
|
68 |
+
| {"response": rag_prompt | llm, "context": itemgetter("context")}
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
@cl.on_chat_start
|
74 |
+
async def setup_chain():
|
75 |
+
# Check if API key is already set
|
76 |
+
api_key = os.environ.get("OPENAI_API_KEY")
|
77 |
+
if not api_key:
|
78 |
+
# In a real app, you'd want to handle this more gracefully
|
79 |
+
api_key = await cl.AskUserMessage(
|
80 |
+
content="Please enter your OpenAI API Key:",
|
81 |
+
timeout=60,
|
82 |
+
raise_on_timeout=True
|
83 |
+
).send()
|
84 |
+
os.environ["OPENAI_API_KEY"] = api_key.content
|
85 |
+
|
86 |
+
# Set a loading message
|
87 |
+
msg = cl.Message(content="Let's talk about [TheDataGuy](https://thedataguy.pro)'s blog posts, how can I help you?", author="System")
|
88 |
+
await msg.send()
|
89 |
+
|
90 |
+
# Store the chain in user session
|
91 |
+
cl.user_session.set("chain", retrieval_augmented_qa_chain)
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
@cl.on_message
|
96 |
+
async def on_message(message: cl.Message):
|
97 |
+
# Get chain from user session
|
98 |
+
chain = cl.user_session.get("chain")
|
99 |
+
|
100 |
+
print( message.content)
|
101 |
+
# Call the chain with the user message
|
102 |
+
response = chain.invoke({"question": message.content})
|
103 |
+
|
104 |
+
|
105 |
+
# Send the response with sources
|
106 |
+
await cl.Message(
|
107 |
+
content=response["response"].content,
|
108 |
+
|
109 |
+
).send()
|
110 |
+
|
chainlit.md
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Let's Talk
|
2 |
+
|
3 |
+
`Let's Talk` is chat app based on contents from [TheDataGuy](https://thedataguy.pro)'s blog posts.
|
4 |
+
|
5 |
+
More information at [Let's Talk](https://github.com/mafzaal/lets-talk)
|
6 |
+
|
pyproject.toml
CHANGED
@@ -5,14 +5,17 @@ description = "Add your description here"
|
|
5 |
readme = "README.md"
|
6 |
requires-python = ">=3.13"
|
7 |
dependencies = [
|
|
|
8 |
"ipykernel>=6.29.5",
|
9 |
"langchain>=0.3.25",
|
10 |
"langchain-community>=0.3.23",
|
11 |
"langchain-core>=0.3.59",
|
12 |
"langchain-huggingface>=0.2.0",
|
13 |
"langchain-openai>=0.3.16",
|
|
|
14 |
"langchain-text-splitters>=0.3.8",
|
15 |
"pandas>=2.2.3",
|
|
|
16 |
"qdrant-client>=1.14.2",
|
17 |
"unstructured[md]>=0.17.2",
|
18 |
]
|
|
|
5 |
readme = "README.md"
|
6 |
requires-python = ">=3.13"
|
7 |
dependencies = [
|
8 |
+
"chainlit>=2.5.5",
|
9 |
"ipykernel>=6.29.5",
|
10 |
"langchain>=0.3.25",
|
11 |
"langchain-community>=0.3.23",
|
12 |
"langchain-core>=0.3.59",
|
13 |
"langchain-huggingface>=0.2.0",
|
14 |
"langchain-openai>=0.3.16",
|
15 |
+
"langchain-qdrant>=0.2.0",
|
16 |
"langchain-text-splitters>=0.3.8",
|
17 |
"pandas>=2.2.3",
|
18 |
+
"python-dotenv>=1.1.0",
|
19 |
"qdrant-client>=1.14.2",
|
20 |
"unstructured[md]>=0.17.2",
|
21 |
]
|