File size: 16,251 Bytes
af85e91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
{
"cells": [
{
"cell_type": "markdown",
"id": "b31c2849",
"metadata": {},
"source": [
"# Utility Functions for Blog Post Loading and Processing\n",
"\n",
"This notebook contains utility functions for loading blog posts from the data directory, processing their metadata, and creating vector embeddings for use in the RAG system."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "848b0a86",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import json\n",
"from pathlib import Path\n",
"from typing import List, Dict, Any, Optional\n",
"\n",
"from langchain_community.document_loaders import DirectoryLoader\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain.schema.document import Document\n",
"from langchain_huggingface import HuggingFaceEmbeddings\n",
"from langchain_community.vectorstores import Qdrant\n",
"\n",
"from IPython.display import Markdown, display\n",
"from dotenv import load_dotenv\n",
"\n",
"# Load environment variables from .env file\n",
"load_dotenv()"
]
},
{
"cell_type": "markdown",
"id": "39e32435",
"metadata": {},
"source": [
"## Configuration\n",
"\n",
"Load configuration from environment variables or use defaults."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a6a5d6d",
"metadata": {},
"outputs": [],
"source": [
"# Configuration with defaults\n",
"DATA_DIR = os.environ.get(\"DATA_DIR\", \"data/\")\n",
"VECTOR_STORAGE_PATH = os.environ.get(\"VECTOR_STORAGE_PATH\", \"./db/vectorstore_v3\")\n",
"EMBEDDING_MODEL = os.environ.get(\"EMBEDDING_MODEL\", \"Snowflake/snowflake-arctic-embed-l\")\n",
"QDRANT_COLLECTION = os.environ.get(\"QDRANT_COLLECTION\", \"thedataguy_documents\")\n",
"BLOG_BASE_URL = os.environ.get(\"BLOG_BASE_URL\", \"https://thedataguy.pro/blog/\")"
]
},
{
"cell_type": "markdown",
"id": "01454147",
"metadata": {},
"source": [
"## Utility Functions\n",
"\n",
"These functions handle the loading, processing, and storing of blog posts."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "25792cd5",
"metadata": {},
"outputs": [],
"source": [
"def load_blog_posts(data_dir: str = DATA_DIR, \n",
" glob_pattern: str = \"*.md\", \n",
" recursive: bool = True, \n",
" show_progress: bool = True) -> List[Document]:\n",
" \"\"\"\n",
" Load blog posts from the specified directory.\n",
" \n",
" Args:\n",
" data_dir: Directory containing the blog posts\n",
" glob_pattern: Pattern to match files\n",
" recursive: Whether to search subdirectories\n",
" show_progress: Whether to show a progress bar\n",
" \n",
" Returns:\n",
" List of Document objects containing the blog posts\n",
" \"\"\"\n",
" text_loader = DirectoryLoader(\n",
" data_dir, \n",
" glob=glob_pattern, \n",
" show_progress=show_progress,\n",
" recursive=recursive\n",
" )\n",
" \n",
" documents = text_loader.load()\n",
" print(f\"Loaded {len(documents)} documents from {data_dir}\")\n",
" return documents"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e7ddba72",
"metadata": {},
"outputs": [],
"source": [
"def update_document_metadata(documents: List[Document], \n",
" data_dir_prefix: str = DATA_DIR,\n",
" blog_base_url: str = BLOG_BASE_URL,\n",
" remove_suffix: str = \"index.md\") -> List[Document]:\n",
" \"\"\"\n",
" Update the metadata of documents to include URL and other information.\n",
" \n",
" Args:\n",
" documents: List of Document objects to update\n",
" data_dir_prefix: Prefix to replace in source paths\n",
" blog_base_url: Base URL for the blog posts\n",
" remove_suffix: Suffix to remove from paths (like index.md)\n",
" \n",
" Returns:\n",
" Updated list of Document objects\n",
" \"\"\"\n",
" for doc in documents:\n",
" # Create URL from source path\n",
" doc.metadata[\"url\"] = doc.metadata[\"source\"].replace(data_dir_prefix, blog_base_url)\n",
" \n",
" # Remove index.md or other suffix if present\n",
" if remove_suffix and doc.metadata[\"url\"].endswith(remove_suffix):\n",
" doc.metadata[\"url\"] = doc.metadata[\"url\"][:-len(remove_suffix)]\n",
" \n",
" # Extract post title from the directory structure\n",
" path_parts = Path(doc.metadata[\"source\"]).parts\n",
" if len(path_parts) > 1:\n",
" # Use the directory name as post_slug\n",
" doc.metadata[\"post_slug\"] = path_parts[-2]\n",
" doc.metadata[\"post_title\"] = path_parts[-2].replace(\"-\", \" \").title()\n",
" \n",
" # Add document length as metadata\n",
" doc.metadata[\"content_length\"] = len(doc.page_content)\n",
" \n",
" return documents"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e0dfe498",
"metadata": {},
"outputs": [],
"source": [
"def get_document_stats(documents: List[Document]) -> Dict[str, Any]:\n",
" \"\"\"\n",
" Get statistics about the documents.\n",
" \n",
" Args:\n",
" documents: List of Document objects\n",
" \n",
" Returns:\n",
" Dictionary with statistics\n",
" \"\"\"\n",
" stats = {\n",
" \"total_documents\": len(documents),\n",
" \"total_characters\": sum(len(doc.page_content) for doc in documents),\n",
" \"min_length\": min(len(doc.page_content) for doc in documents),\n",
" \"max_length\": max(len(doc.page_content) for doc in documents),\n",
" \"avg_length\": sum(len(doc.page_content) for doc in documents) / len(documents) if documents else 0,\n",
" }\n",
" \n",
" # Create a list of document info for analysis\n",
" doc_info = []\n",
" for doc in documents:\n",
" doc_info.append({\n",
" \"url\": doc.metadata.get(\"url\", \"\"),\n",
" \"source\": doc.metadata.get(\"source\", \"\"),\n",
" \"title\": doc.metadata.get(\"post_title\", \"\"),\n",
" \"text_length\": doc.metadata.get(\"content_length\", 0),\n",
" })\n",
" \n",
" stats[\"documents\"] = doc_info\n",
" return stats"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0ae139c0",
"metadata": {},
"outputs": [],
"source": [
"def display_document_stats(stats: Dict[str, Any]):\n",
" \"\"\"\n",
" Display document statistics in a readable format.\n",
" \n",
" Args:\n",
" stats: Dictionary with statistics from get_document_stats\n",
" \"\"\"\n",
" print(f\"Total Documents: {stats['total_documents']}\")\n",
" print(f\"Total Characters: {stats['total_characters']}\")\n",
" print(f\"Min Length: {stats['min_length']} characters\")\n",
" print(f\"Max Length: {stats['max_length']} characters\")\n",
" print(f\"Average Length: {stats['avg_length']:.2f} characters\")\n",
" \n",
" # Display documents as a table\n",
" import pandas as pd\n",
" if stats[\"documents\"]:\n",
" df = pd.DataFrame(stats[\"documents\"])\n",
" display(df)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2dcf66b4",
"metadata": {},
"outputs": [],
"source": [
"def split_documents(documents: List[Document], \n",
" chunk_size: int = 1000, \n",
" chunk_overlap: int = 200) -> List[Document]:\n",
" \"\"\"\n",
" Split documents into chunks for better embedding and retrieval.\n",
" \n",
" Args:\n",
" documents: List of Document objects to split\n",
" chunk_size: Size of each chunk in characters\n",
" chunk_overlap: Overlap between chunks in characters\n",
" \n",
" Returns:\n",
" List of split Document objects\n",
" \"\"\"\n",
" text_splitter = RecursiveCharacterTextSplitter(\n",
" chunk_size=chunk_size,\n",
" chunk_overlap=chunk_overlap,\n",
" length_function=len,\n",
" )\n",
" \n",
" split_docs = text_splitter.split_documents(documents)\n",
" print(f\"Split {len(documents)} documents into {len(split_docs)} chunks\")\n",
" return split_docs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "527ad848",
"metadata": {},
"outputs": [],
"source": [
"def create_vector_store(documents: List[Document], \n",
" storage_path: str = VECTOR_STORAGE_PATH,\n",
" collection_name: str = QDRANT_COLLECTION,\n",
" embedding_model: str = EMBEDDING_MODEL,\n",
" force_recreate: bool = False) -> Qdrant:\n",
" \"\"\"\n",
" Create a vector store from documents.\n",
" \n",
" Args:\n",
" documents: List of Document objects to store\n",
" storage_path: Path to the vector store\n",
" collection_name: Name of the collection\n",
" embedding_model: Name of the embedding model\n",
" force_recreate: Whether to force recreation of the vector store\n",
" \n",
" Returns:\n",
" Qdrant vector store\n",
" \"\"\"\n",
" # Initialize the embedding model\n",
" embeddings = HuggingFaceEmbeddings(model_name=embedding_model)\n",
" \n",
" # Create the directory if it doesn't exist\n",
" storage_dir = Path(storage_path).parent\n",
" os.makedirs(storage_dir, exist_ok=True)\n",
" \n",
" # Check if vector store exists\n",
" vector_store_exists = Path(storage_path).exists() and not force_recreate\n",
" \n",
" if vector_store_exists:\n",
" print(f\"Loading existing vector store from {storage_path}\")\n",
" try:\n",
" vector_store = Qdrant(\n",
" path=storage_path,\n",
" embedding_function=embeddings,\n",
" collection_name=collection_name\n",
" )\n",
" return vector_store\n",
" except Exception as e:\n",
" print(f\"Error loading existing vector store: {e}\")\n",
" print(\"Creating new vector store...\")\n",
" force_recreate = True\n",
" \n",
" # Create new vector store\n",
" print(f\"Creating new vector store at {storage_path}\")\n",
" vector_store = Qdrant.from_documents(\n",
" documents=documents,\n",
" embedding=embeddings,\n",
" path=storage_path,\n",
" collection_name=collection_name,\n",
" )\n",
" \n",
" return vector_store"
]
},
{
"cell_type": "markdown",
"id": "c78f99fc",
"metadata": {},
"source": [
"## Example Usage\n",
"\n",
"Here's how to use these utility functions for processing blog posts."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "132d32c6",
"metadata": {},
"outputs": [],
"source": [
"def process_blog_posts(data_dir: str = DATA_DIR,\n",
" create_embeddings: bool = True,\n",
" force_recreate_embeddings: bool = False):\n",
" \"\"\"\n",
" Complete pipeline to process blog posts and optionally create vector embeddings.\n",
" \n",
" Args:\n",
" data_dir: Directory containing the blog posts\n",
" create_embeddings: Whether to create vector embeddings\n",
" force_recreate_embeddings: Whether to force recreation of embeddings\n",
" \n",
" Returns:\n",
" Dictionary with data and vector store (if created)\n",
" \"\"\"\n",
" # Load documents\n",
" documents = load_blog_posts(data_dir)\n",
" \n",
" # Update metadata\n",
" documents = update_document_metadata(documents)\n",
" \n",
" # Get and display stats\n",
" stats = get_document_stats(documents)\n",
" display_document_stats(stats)\n",
" \n",
" result = {\n",
" \"documents\": documents,\n",
" \"stats\": stats,\n",
" \"vector_store\": None\n",
" }\n",
" \n",
" # Create vector store if requested\n",
" if create_embeddings:\n",
" vector_store = create_vector_store(\n",
" documents, \n",
" force_recreate=force_recreate_embeddings\n",
" )\n",
" result[\"vector_store\"] = vector_store\n",
" \n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "266d4fb3",
"metadata": {},
"outputs": [],
"source": [
"# Example usage\n",
"if __name__ == \"__main__\":\n",
" # Process blog posts without creating embeddings\n",
" result = process_blog_posts(create_embeddings=False)\n",
" \n",
" # Example: Access the documents\n",
" print(f\"\\nDocument example: {result['documents'][0].metadata}\")\n",
" \n",
" # Create embeddings if needed\n",
" # result = process_blog_posts(create_embeddings=True)\n",
" \n",
" # Retriever example\n",
" # retriever = result[\"vector_store\"].as_retriever()\n",
" # query = \"What is RAGAS?\"\n",
" # docs = retriever.invoke(query, k=2)\n",
" # print(f\"\\nRetrieved {len(docs)} documents for query: {query}\")"
]
},
{
"cell_type": "markdown",
"id": "22132649",
"metadata": {},
"source": [
"## Function for Loading Existing Vector Store\n",
"\n",
"This function can be used to load an existing vector store without reprocessing all blog posts."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c24e0c02",
"metadata": {},
"outputs": [],
"source": [
"def load_vector_store(storage_path: str = VECTOR_STORAGE_PATH,\n",
" collection_name: str = QDRANT_COLLECTION,\n",
" embedding_model: str = EMBEDDING_MODEL) -> Optional[Qdrant]:\n",
" \"\"\"\n",
" Load an existing vector store.\n",
" \n",
" Args:\n",
" storage_path: Path to the vector store\n",
" collection_name: Name of the collection\n",
" embedding_model: Name of the embedding model\n",
" \n",
" Returns:\n",
" Qdrant vector store or None if it doesn't exist\n",
" \"\"\"\n",
" # Initialize the embedding model\n",
" embeddings = HuggingFaceEmbeddings(model_name=embedding_model)\n",
" \n",
" # Check if vector store exists\n",
" if not Path(storage_path).exists():\n",
" print(f\"Vector store not found at {storage_path}\")\n",
" return None\n",
" \n",
" try:\n",
" vector_store = Qdrant(\n",
" path=storage_path,\n",
" embedding_function=embeddings,\n",
" collection_name=collection_name\n",
" )\n",
" print(f\"Loaded vector store from {storage_path}\")\n",
" return vector_store\n",
" except Exception as e:\n",
" print(f\"Error loading vector store: {e}\")\n",
" return None"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|