Spaces:
Sleeping
Sleeping
File size: 41,752 Bytes
c105678 3a58e1b cd1cc5d 3a58e1b c105678 e5edf92 8dac441 cd1cc5d bf928c6 fa62b8d c105678 fa62b8d c105678 fa62b8d e5edf92 c105678 fa62b8d c105678 e5edf92 fa62b8d e5edf92 fa62b8d c105678 fa62b8d c105678 fa62b8d bf928c6 cd1cc5d e5edf92 fa62b8d cd1cc5d fa62b8d cd1cc5d fa62b8d c105678 fa62b8d cd1cc5d fa62b8d 8dac441 fa62b8d cd1cc5d fa62b8d bf928c6 fa62b8d bf928c6 fa62b8d 8dac441 fa62b8d f515ccd fa62b8d 8dac441 fa62b8d c1fca59 fa62b8d f515ccd fa62b8d afec0dd c105678 fa62b8d c105678 fa62b8d c105678 fa62b8d 3a58e1b fa62b8d 3a58e1b cd1cc5d 3a58e1b fa62b8d 3a58e1b fa62b8d 3a58e1b fa62b8d 3a58e1b fa62b8d 3a58e1b fa62b8d 8dac441 fa62b8d 1c91a49 fa62b8d c105678 fa62b8d 8dac441 fa62b8d 8dac441 fa62b8d 8dac441 fa62b8d c1fca59 fa62b8d 8dac441 fa62b8d 8dac441 fa62b8d cb8f4d2 fa62b8d 8dac441 fa62b8d 8dac441 fa62b8d 8dac441 fa62b8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 |
import os
import torch
import time
import threading
import json
import gc
from flask import Flask, request, jsonify, send_file, Response, stream_with_context
from werkzeug.utils import secure_filename
from PIL import Image
import io
import zipfile
import uuid
import traceback
from huggingface_hub import snapshot_download
from flask_cors import CORS
import numpy as np
import trimesh
from transformers import pipeline
from scipy.ndimage import gaussian_filter, uniform_filter, median_filter
from scipy import interpolate
import cv2
app = Flask(__name__)
CORS(app) # Enable CORS for all routes
# Configure directories
UPLOAD_FOLDER = '/tmp/uploads'
RESULTS_FOLDER = '/tmp/results'
CACHE_DIR = '/tmp/huggingface'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
# Create necessary directories
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULTS_FOLDER, exist_ok=True)
os.makedirs(CACHE_DIR, exist_ok=True)
# Set Hugging Face cache environment variables
os.environ['HF_HOME'] = CACHE_DIR
os.environ['TRANSFORMERS_CACHE'] = os.path.join(CACHE_DIR, 'transformers')
os.environ['HF_DATASETS_CACHE'] = os.path.join(CACHE_DIR, 'datasets')
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max
# Job tracking dictionary
processing_jobs = {}
# Global model variables
depth_estimator = None
model_loaded = False
model_loading = False
# Configuration for processing
TIMEOUT_SECONDS = 240 # 4 minutes max for processing
MAX_DIMENSION = 512 # Max image dimension to process
# TimeoutError for handling timeouts
class TimeoutError(Exception):
pass
# Thread-safe timeout implementation
def process_with_timeout(function, args, timeout):
result = [None]
error = [None]
completed = [False]
def target():
try:
result[0] = function(*args)
completed[0] = True
except Exception as e:
error[0] = e
thread = threading.Thread(target=target)
thread.daemon = True
thread.start()
thread.join(timeout)
if not completed[0]:
if thread.is_alive():
return None, TimeoutError(f"Processing timed out after {timeout} seconds")
elif error[0]:
return None, error[0]
if error[0]:
return None, error[0]
return result[0], None
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
# Enhanced image preprocessing with better detail preservation
def preprocess_image(image_path):
with Image.open(image_path) as img:
# Keep alpha channel if present
has_alpha = img.mode == 'RGBA'
# Convert to proper format while preserving alpha
if has_alpha:
img = img.convert("RGBA")
else:
img = img.convert("RGB")
# Resize if the image is too large
if img.width > MAX_DIMENSION or img.height > MAX_DIMENSION:
# Calculate new dimensions while preserving aspect ratio
if img.width > img.height:
new_width = MAX_DIMENSION
new_height = int(img.height * (MAX_DIMENSION / img.width))
else:
new_height = MAX_DIMENSION
new_width = int(img.width * (MAX_DIMENSION / img.height))
# Use high-quality Lanczos resampling for better detail preservation
img = img.resize((new_width, new_height), Image.LANCZOS)
# Convert to numpy array for additional preprocessing
img_array = np.array(img)
# Extract alpha channel if present
if has_alpha:
alpha = img_array[:, :, 3]
rgb = img_array[:, :, :3]
else:
rgb = img_array
# Apply adaptive histogram equalization for better contrast on RGB channels only
if len(rgb.shape) == 3 and rgb.shape[2] == 3:
# Convert to LAB color space for better contrast enhancement
lab = cv2.cvtColor(rgb, cv2.COLOR_RGB2LAB)
l, a, b = cv2.split(lab)
# Apply CLAHE to L channel
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
cl = clahe.apply(l)
# Merge channels back
enhanced_lab = cv2.merge((cl, a, b))
# Convert back to RGB
rgb_enhanced = cv2.cvtColor(enhanced_lab, cv2.COLOR_LAB2RGB)
# Recombine with alpha if needed
if has_alpha:
result = np.dstack((rgb_enhanced, alpha))
img = Image.fromarray(result, 'RGBA')
else:
img = Image.fromarray(rgb_enhanced, 'RGB')
return img
def load_model():
global depth_estimator, model_loaded, model_loading
if model_loaded:
return depth_estimator
if model_loading:
# Wait for model to load if it's already in progress
while model_loading and not model_loaded:
time.sleep(0.5)
return depth_estimator
try:
model_loading = True
print("Starting model loading...")
# Using DPT-Large which provides better detail than DPT-Hybrid
# Alternatively, consider "vinvino02/glpn-nyu" for different detail characteristics
model_name = "Intel/dpt-large"
# Download model with retry mechanism
max_retries = 3
retry_delay = 5
for attempt in range(max_retries):
try:
snapshot_download(
repo_id=model_name,
cache_dir=CACHE_DIR,
resume_download=True,
)
break
except Exception as e:
if attempt < max_retries - 1:
print(f"Download attempt {attempt+1} failed: {str(e)}. Retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2
else:
raise
# Initialize model with appropriate precision
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load depth estimator pipeline
depth_estimator = pipeline(
"depth-estimation",
model=model_name,
device=device if device == "cuda" else -1,
cache_dir=CACHE_DIR
)
# Optimize memory usage
if device == "cuda":
torch.cuda.empty_cache()
model_loaded = True
print(f"Model loaded successfully on {device}")
return depth_estimator
except Exception as e:
print(f"Error loading model: {str(e)}")
print(traceback.format_exc())
raise
finally:
model_loading = False
# Enhanced depth processing function to improve detail quality
def enhance_depth_map(depth_map, detail_level='medium'):
"""Apply sophisticated processing to enhance depth map details"""
# Convert to numpy array if needed
if isinstance(depth_map, Image.Image):
depth_map = np.array(depth_map)
# Make sure the depth map is 2D
if len(depth_map.shape) > 2:
depth_map = np.mean(depth_map, axis=2) if depth_map.shape[2] > 1 else depth_map[:,:,0]
# Create a copy for processing
enhanced_depth = depth_map.copy().astype(np.float32)
# Remove outliers using percentile clipping (more stable than min/max)
p_low, p_high = np.percentile(enhanced_depth, [1, 99])
enhanced_depth = np.clip(enhanced_depth, p_low, p_high)
# Normalize to 0-1 range for processing
enhanced_depth = (enhanced_depth - p_low) / (p_high - p_low) if p_high > p_low else enhanced_depth
# Apply different enhancement methods based on detail level
if detail_level == 'high':
# Apply unsharp masking for edge enhancement - simulating Hunyuan's detail technique
# First apply gaussian blur
blurred = gaussian_filter(enhanced_depth, sigma=1.5)
# Create the unsharp mask
mask = enhanced_depth - blurred
# Apply the mask with strength factor
enhanced_depth = enhanced_depth + 1.5 * mask
# Apply bilateral filter to preserve edges while smoothing noise
# Simulate using gaussian combinations
smooth1 = gaussian_filter(enhanced_depth, sigma=0.5)
smooth2 = gaussian_filter(enhanced_depth, sigma=2.0)
edge_mask = enhanced_depth - smooth2
enhanced_depth = smooth1 + 1.2 * edge_mask
elif detail_level == 'medium':
# Less aggressive but still effective enhancement
# Apply mild unsharp masking
blurred = gaussian_filter(enhanced_depth, sigma=1.0)
mask = enhanced_depth - blurred
enhanced_depth = enhanced_depth + 0.8 * mask
# Apply mild smoothing to reduce noise but preserve edges
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.5)
else: # low
# Just apply noise reduction without too much detail enhancement
enhanced_depth = gaussian_filter(enhanced_depth, sigma=0.7)
# Normalize again after processing
enhanced_depth = np.clip(enhanced_depth, 0, 1)
return enhanced_depth
# Convert depth map to 3D mesh with significantly enhanced detail
def depth_to_mesh(depth_map, image, resolution=100, detail_level='medium'):
"""Convert depth map to complete 3D model with all sides"""
# First, enhance the depth map for better details
enhanced_depth = enhance_depth_map(depth_map, detail_level)
# Get dimensions of depth map
h, w = enhanced_depth.shape
# Create a higher resolution grid for better detail
x = np.linspace(0, w-1, resolution)
y = np.linspace(0, h-1, resolution)
x_grid, y_grid = np.meshgrid(x, y)
# Use bicubic interpolation for smoother surface
interp_func = interpolate.RectBivariateSpline(
np.arange(h), np.arange(w), enhanced_depth, kx=3, ky=3
)
# Sample depth at grid points
z_values = interp_func(y, x, grid=True)
# Process enhancement as in original code
if detail_level == 'high':
dx = np.gradient(z_values, axis=1)
dy = np.gradient(z_values, axis=0)
gradient_magnitude = np.sqrt(dx**2 + dy**2)
edge_mask = np.clip(gradient_magnitude * 5, 0, 0.2)
z_values = z_values + edge_mask * (z_values - gaussian_filter(z_values, sigma=1.0))
# Normalize z-values with advanced scaling
z_min, z_max = np.percentile(z_values, [2, 98])
z_values = (z_values - z_min) / (z_max - z_min) if z_max > z_min else z_values
# Apply depth scaling
if detail_level == 'high':
z_scaling = 2.5
elif detail_level == 'medium':
z_scaling = 2.0
else:
z_scaling = 1.5
z_values = z_values * z_scaling
# Normalize coordinates for front face
x_grid_front = (x_grid / w - 0.5) * 2.0
y_grid_front = (y_grid / h - 0.5) * 2.0
# Create all vertices (front, back, and sides)
vertices = []
# Front face vertices
front_vertices = np.vstack([x_grid_front.flatten(), -y_grid_front.flatten(), -z_values.flatten()]).T
vertices.append(front_vertices)
# Back face vertices (mirrored from front face)
back_depth = 1.0 # Constant thickness for the model
back_vertices = np.vstack([x_grid_front.flatten(), -y_grid_front.flatten(), -z_values.flatten() - back_depth]).T
vertices.append(back_vertices)
# Create side vertices (top, bottom, left, right)
# For simplicity, we use a grid mapping for sides
top_vertices = []
bottom_vertices = []
left_vertices = []
right_vertices = []
# Create sides by connecting front and back faces
for i in range(resolution):
# Top edge
for j in range(resolution):
if i == 0:
top_vertices.append(front_vertices[i * resolution + j])
top_vertices.append(back_vertices[i * resolution + j])
# Bottom edge
if i == resolution - 1:
bottom_vertices.append(front_vertices[i * resolution + j])
bottom_vertices.append(back_vertices[i * resolution + j])
# Left edge
if j == 0:
left_vertices.append(front_vertices[i * resolution + j])
left_vertices.append(back_vertices[i * resolution + j])
# Right edge
if j == resolution - 1:
right_vertices.append(front_vertices[i * resolution + j])
right_vertices.append(back_vertices[i * resolution + j])
# Combine all vertices
all_vertices = np.vstack([
front_vertices,
back_vertices,
np.array(top_vertices),
np.array(bottom_vertices),
np.array(left_vertices),
np.array(right_vertices)
])
# Create faces (triangles)
faces = []
# Front face triangles
front_faces = []
for i in range(resolution-1):
for j in range(resolution-1):
p1 = i * resolution + j
p2 = i * resolution + (j + 1)
p3 = (i + 1) * resolution + j
p4 = (i + 1) * resolution + (j + 1)
# Calculate normals for consistent orientation
v1 = front_vertices[p1]
v2 = front_vertices[p2]
v3 = front_vertices[p3]
v4 = front_vertices[p4]
norm1 = np.cross(v2-v1, v4-v1)
norm2 = np.cross(v4-v3, v1-v3)
if np.dot(norm1, norm2) >= 0:
front_faces.append([p1, p2, p4])
front_faces.append([p1, p4, p3])
else:
front_faces.append([p1, p2, p3])
front_faces.append([p2, p4, p3])
# Back face triangles (note: reversed winding order for correct normals)
back_offset = resolution * resolution # Offset for back face vertices
back_faces = []
for i in range(resolution-1):
for j in range(resolution-1):
p1 = back_offset + i * resolution + j
p2 = back_offset + i * resolution + (j + 1)
p3 = back_offset + (i + 1) * resolution + j
p4 = back_offset + (i + 1) * resolution + (j + 1)
# Reverse winding order compared to front face
back_faces.append([p1, p4, p2])
back_faces.append([p1, p3, p4])
# Side faces (connecting front and back)
side_faces = []
# Add faces for sides (top, bottom, left, right)
side_offset = 2 * resolution * resolution # Offset after front and back
# Top side
top_count = len(top_vertices)
for i in range(0, top_count - 2, 2):
side_faces.append([side_offset + i, side_offset + i + 1, side_offset + i + 3])
side_faces.append([side_offset + i, side_offset + i + 3, side_offset + i + 2])
# Bottom side
bottom_offset = side_offset + top_count
bottom_count = len(bottom_vertices)
for i in range(0, bottom_count - 2, 2):
side_faces.append([bottom_offset + i, bottom_offset + i + 3, bottom_offset + i + 1])
side_faces.append([bottom_offset + i, bottom_offset + i + 2, bottom_offset + i + 3])
# Left side
left_offset = bottom_offset + bottom_count
left_count = len(left_vertices)
for i in range(0, left_count - 2, 2):
side_faces.append([left_offset + i, left_offset + i + 1, left_offset + i + 3])
side_faces.append([left_offset + i, left_offset + i + 3, left_offset + i + 2])
# Right side
right_offset = left_offset + left_count
right_count = len(right_vertices)
for i in range(0, right_count - 2, 2):
side_faces.append([right_offset + i, right_offset + i + 3, right_offset + i + 1])
side_faces.append([right_offset + i, right_offset + i + 2, right_offset + i + 3])
# Combine all faces
faces = np.array(front_faces + back_faces + side_faces)
# Create mesh
mesh = trimesh.Trimesh(vertices=all_vertices, faces=faces)
# Apply texturing if image is provided
if image:
# Handle RGBA properly to ensure transparency is maintained
img_array = np.array(image)
# Check if image has alpha channel
has_alpha = len(img_array.shape) == 3 and img_array.shape[2] == 4
# Create vertex colors with transparency support
vertex_colors = np.zeros((all_vertices.shape[0], 4), dtype=np.uint8)
# Fill with default color (will be overridden for front face)
vertex_colors[:, :3] = [200, 200, 200] # Light gray default
vertex_colors[:, 3] = 255 # Fully opaque
# Front face texture (sample from image)
for i in range(resolution):
for j in range(resolution):
# Calculate image coordinates
img_x = j * (img_array.shape[1] - 1) / (resolution - 1)
img_y = i * (img_array.shape[0] - 1) / (resolution - 1)
# Bilinear interpolation setup
x0, y0 = int(img_x), int(img_y)
x1, y1 = min(x0 + 1, img_array.shape[1] - 1), min(y0 + 1, img_array.shape[0] - 1)
# Interpolation weights
wx = img_x - x0
wy = img_y - y0
vertex_idx = i * resolution + j
if has_alpha:
# Handle RGBA with bilinear interpolation
for c in range(4):
vertex_colors[vertex_idx, c] = int((1-wx)*(1-wy)*img_array[y0, x0, c] +
wx*(1-wy)*img_array[y0, x1, c] +
(1-wx)*wy*img_array[y1, x0, c] +
wx*wy*img_array[y1, x1, c])
else:
# Handle RGB (no alpha)
for c in range(3):
vertex_colors[vertex_idx, c] = int((1-wx)*(1-wy)*img_array[y0, x0, c] +
wx*(1-wy)*img_array[y0, x1, c] +
(1-wx)*wy*img_array[y1, x0, c] +
wx*wy*img_array[y1, x1, c])
vertex_colors[vertex_idx, 3] = 255 # Fully opaque
# Apply simpler texturing to back face
back_face_start = resolution * resolution
back_face_color = [180, 180, 180, 255] # Slightly darker gray
vertex_colors[back_face_start:back_face_start + (resolution * resolution)] = back_face_color
mesh.visual.vertex_colors = vertex_colors
# Apply smoothing to get rid of staircase artifacts
if detail_level != 'high':
mesh = mesh.smoothed(method='laplacian', iterations=1)
# Calculate and fix normals for better rendering
mesh.fix_normals()
return mesh
@app.route('/health', methods=['GET'])
def health_check():
return jsonify({
"status": "healthy",
"model": "Enhanced Depth-Based 3D Model Generator (DPT-Large)",
"device": "cuda" if torch.cuda.is_available() else "cpu"
}), 200
@app.route('/progress/<job_id>', methods=['GET'])
def progress(job_id):
def generate():
if job_id not in processing_jobs:
yield f"data: {json.dumps({'error': 'Job not found'})}\n\n"
return
job = processing_jobs[job_id]
# Send initial progress
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
# Wait for job to complete or update
last_progress = job['progress']
check_count = 0
while job['status'] == 'processing':
if job['progress'] != last_progress:
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
last_progress = job['progress']
time.sleep(0.5)
check_count += 1
# If client hasn't received updates for a while, check if job is still running
if check_count > 60: # 30 seconds with no updates
if 'thread_alive' in job and not job['thread_alive']():
job['status'] = 'error'
job['error'] = 'Processing thread died unexpectedly'
break
check_count = 0
# Send final status
if job['status'] == 'completed':
yield f"data: {json.dumps({'status': 'completed', 'progress': 100, 'result_url': job['result_url'], 'preview_url': job['preview_url']})}\n\n"
else:
yield f"data: {json.dumps({'status': 'error', 'error': job['error']})}\n\n"
return Response(stream_with_context(generate()), mimetype='text/event-stream')
@app.route('/convert', methods=['POST'])
def convert_image_to_3d():
# Check if image is in the request
if 'image' not in request.files:
return jsonify({"error": "No image provided"}), 400
file = request.files['image']
if file.filename == '':
return jsonify({"error": "No image selected"}), 400
if not allowed_file(file.filename):
return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
# Get optional parameters with defaults
try:
mesh_resolution = min(int(request.form.get('mesh_resolution', 100)), 200) # Limit max resolution
output_format = request.form.get('output_format', 'obj').lower()
detail_level = request.form.get('detail_level', 'medium').lower() # Parameter for detail level
texture_quality = request.form.get('texture_quality', 'medium').lower() # New parameter for texture quality
except ValueError:
return jsonify({"error": "Invalid parameter values"}), 400
# Validate output format
if output_format not in ['obj', 'glb']:
return jsonify({"error": "Unsupported output format. Use 'obj' or 'glb'"}), 400
# Adjust mesh resolution based on detail level
if detail_level == 'high':
mesh_resolution = min(int(mesh_resolution * 1.5), 200)
elif detail_level == 'low':
mesh_resolution = max(int(mesh_resolution * 0.7), 50)
# Create a job ID
job_id = str(uuid.uuid4())
output_dir = os.path.join(RESULTS_FOLDER, job_id)
os.makedirs(output_dir, exist_ok=True)
# Save the uploaded file
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}")
file.save(filepath)
# Initialize job tracking
processing_jobs[job_id] = {
'status': 'processing',
'progress': 0,
'result_url': None,
'preview_url': None,
'error': None,
'output_format': output_format,
'created_at': time.time()
}
# Start processing in a separate thread
def process_image():
thread = threading.current_thread()
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
try:
# Preprocess image with enhanced detail preservation
processing_jobs[job_id]['progress'] = 5
image = preprocess_image(filepath)
processing_jobs[job_id]['progress'] = 10
# Load model
try:
model = load_model()
processing_jobs[job_id]['progress'] = 30
except Exception as e:
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Error loading model: {str(e)}"
return
# Process image with thread-safe timeout
try:
def estimate_depth():
# Get depth map
result = model(image)
depth_map = result["depth"]
# Convert to numpy array if needed
if isinstance(depth_map, torch.Tensor):
depth_map = depth_map.cpu().numpy()
elif hasattr(depth_map, 'numpy'):
depth_map = depth_map.numpy()
elif isinstance(depth_map, Image.Image):
depth_map = np.array(depth_map)
return depth_map
depth_map, error = process_with_timeout(estimate_depth, [], TIMEOUT_SECONDS)
if error:
if isinstance(error, TimeoutError):
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds"
return
else:
raise error
processing_jobs[job_id]['progress'] = 60
# Create mesh from depth map with enhanced detail handling
mesh_resolution_int = int(mesh_resolution)
mesh = depth_to_mesh(depth_map, image, resolution=mesh_resolution_int, detail_level=detail_level)
processing_jobs[job_id]['progress'] = 80
except Exception as e:
error_details = traceback.format_exc()
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
print(f"Error processing job {job_id}: {str(e)}")
print(error_details)
return
# Export based on requested format with enhanced quality settings
try:
if output_format == 'obj':
obj_path = os.path.join(output_dir, "model.obj")
# Export with normal and texture coordinates
mesh.export(
obj_path,
file_type='obj',
include_normals=True,
include_texture=True
)
# Create a zip file with OBJ and MTL
zip_path = os.path.join(output_dir, "model.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
zipf.write(obj_path, arcname="model.obj")
mtl_path = os.path.join(output_dir, "model.mtl")
if os.path.exists(mtl_path):
zipf.write(mtl_path, arcname="model.mtl")
# Include texture file if it exists
texture_path = os.path.join(output_dir, "model.png")
if os.path.exists(texture_path):
zipf.write(texture_path, arcname="model.png")
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
elif output_format == 'glb':
# Export as GLB with enhanced settings
glb_path = os.path.join(output_dir, "model.glb")
mesh.export(
glb_path,
file_type='glb'
)
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
# Update job status
processing_jobs[job_id]['status'] = 'completed'
processing_jobs[job_id]['progress'] = 100
print(f"Job {job_id} completed successfully")
except Exception as e:
error_details = traceback.format_exc()
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Error exporting model: {str(e)}"
print(f"Error exporting model for job {job_id}: {str(e)}")
print(error_details)
# Clean up temporary file
if os.path.exists(filepath):
os.remove(filepath)
# Force garbage collection to free memory
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
except Exception as e:
# Handle errors
error_details = traceback.format_exc()
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"{str(e)}\n{error_details}"
print(f"Error processing job {job_id}: {str(e)}")
print(error_details)
# Clean up on error
if os.path.exists(filepath):
os.remove(filepath)
# Start processing thread
processing_thread = threading.Thread(target=process_image)
processing_thread.daemon = True
processing_thread.start()
# Return job ID immediately
return jsonify({"job_id": job_id}), 202 # 202 Accepted
@app.route('/download/<job_id>', methods=['GET'])
def download_model(job_id):
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
return jsonify({"error": "Model not found or processing not complete"}), 404
# Get the output directory for this job
output_dir = os.path.join(RESULTS_FOLDER, job_id)
# Determine file format from the job data
output_format = processing_jobs[job_id].get('output_format', 'obj')
if output_format == 'obj':
zip_path = os.path.join(output_dir, "model.zip")
if os.path.exists(zip_path):
return send_file(zip_path, as_attachment=True, download_name="model.zip")
else: # glb
glb_path = os.path.join(output_dir, "model.glb")
if os.path.exists(glb_path):
return send_file(glb_path, as_attachment=True, download_name="model.glb")
return jsonify({"error": "File not found"}), 404
@app.route('/preview/<job_id>', methods=['GET'])
def preview_model(job_id):
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
return jsonify({"error": "Model not found or processing not complete"}), 404
# Get the output directory for this job
output_dir = os.path.join(RESULTS_FOLDER, job_id)
output_format = processing_jobs[job_id].get('output_format', 'obj')
if output_format == 'obj':
obj_path = os.path.join(output_dir, "model.obj")
if os.path.exists(obj_path):
return send_file(obj_path, mimetype='model/obj')
else: # glb
glb_path = os.path.join(output_dir, "model.glb")
if os.path.exists(glb_path):
return send_file(glb_path, mimetype='model/gltf-binary')
return jsonify({"error": "Model file not found"}), 404
# Cleanup old jobs periodically
def cleanup_old_jobs():
current_time = time.time()
job_ids_to_remove = []
for job_id, job_data in processing_jobs.items():
# Remove completed jobs after 1 hour
if job_data['status'] == 'completed' and (current_time - job_data.get('created_at', 0)) > 3600:
job_ids_to_remove.append(job_id)
# Remove error jobs after 30 minutes
elif job_data['status'] == 'error' and (current_time - job_data.get('created_at', 0)) > 1800:
job_ids_to_remove.append(job_id)
# Remove the jobs
for job_id in job_ids_to_remove:
output_dir = os.path.join(RESULTS_FOLDER, job_id)
try:
import shutil
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
except Exception as e:
print(f"Error cleaning up job {job_id}: {str(e)}")
# Remove from tracking dictionary
if job_id in processing_jobs:
del processing_jobs[job_id]
# Schedule the next cleanup
threading.Timer(300, cleanup_old_jobs).start() # Run every 5 minutes
# New endpoint to get detailed information about a model
@app.route('/model-info/<job_id>', methods=['GET'])
def model_info(job_id):
if job_id not in processing_jobs:
return jsonify({"error": "Model not found"}), 404
job = processing_jobs[job_id]
if job['status'] != 'completed':
return jsonify({
"status": job['status'],
"progress": job['progress'],
"error": job.get('error')
}), 200
# For completed jobs, include information about the model
output_dir = os.path.join(RESULTS_FOLDER, job_id)
model_stats = {}
# Get file size
if job['output_format'] == 'obj':
obj_path = os.path.join(output_dir, "model.obj")
zip_path = os.path.join(output_dir, "model.zip")
if os.path.exists(obj_path):
model_stats['obj_size'] = os.path.getsize(obj_path)
if os.path.exists(zip_path):
model_stats['package_size'] = os.path.getsize(zip_path)
else: # glb
glb_path = os.path.join(output_dir, "model.glb")
if os.path.exists(glb_path):
model_stats['model_size'] = os.path.getsize(glb_path)
# Return detailed info
return jsonify({
"status": job['status'],
"model_format": job['output_format'],
"download_url": job['result_url'],
"preview_url": job['preview_url'],
"model_stats": model_stats,
"created_at": job.get('created_at'),
"completed_at": job.get('completed_at')
}), 200
@app.route('/', methods=['GET'])
def index():
return jsonify({
"message": "Enhanced Image to 3D API (DPT-Large Model)",
"endpoints": [
"/convert",
"/progress/<job_id>",
"/download/<job_id>",
"/preview/<job_id>",
"/model-info/<job_id>"
],
"parameters": {
"mesh_resolution": "Integer (50-200), controls mesh density",
"output_format": "obj or glb",
"detail_level": "low, medium, or high - controls the level of detail in the final model",
"texture_quality": "low, medium, or high - controls the quality of textures"
},
"description": "This API creates high-quality 3D models from 2D images with enhanced detail finishing similar to Hunyuan model"
}), 200
# Example endpoint showing how to compare different detail levels
@app.route('/detail-comparison', methods=['POST'])
def compare_detail_levels():
# Check if image is in the request
if 'image' not in request.files:
return jsonify({"error": "No image provided"}), 400
file = request.files['image']
if file.filename == '':
return jsonify({"error": "No image selected"}), 400
if not allowed_file(file.filename):
return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
# Create a job ID
job_id = str(uuid.uuid4())
output_dir = os.path.join(RESULTS_FOLDER, job_id)
os.makedirs(output_dir, exist_ok=True)
# Save the uploaded file
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}")
file.save(filepath)
# Initialize job tracking
processing_jobs[job_id] = {
'status': 'processing',
'progress': 0,
'result_url': None,
'preview_url': None,
'error': None,
'output_format': 'glb', # Use GLB for comparison
'created_at': time.time(),
'comparison': True
}
# Process in separate thread to create 3 different detail levels
def process_comparison():
thread = threading.current_thread()
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
try:
# Preprocess image
image = preprocess_image(filepath)
processing_jobs[job_id]['progress'] = 10
# Load model
try:
model = load_model()
processing_jobs[job_id]['progress'] = 20
except Exception as e:
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Error loading model: {str(e)}"
return
# Process image to get depth map
try:
depth_map = model(image)["depth"]
if isinstance(depth_map, torch.Tensor):
depth_map = depth_map.cpu().numpy()
elif hasattr(depth_map, 'numpy'):
depth_map = depth_map.numpy()
elif isinstance(depth_map, Image.Image):
depth_map = np.array(depth_map)
processing_jobs[job_id]['progress'] = 40
except Exception as e:
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Error estimating depth: {str(e)}"
return
# Create meshes at different detail levels
result_urls = {}
for detail_level in ['low', 'medium', 'high']:
try:
# Update progress
if detail_level == 'low':
processing_jobs[job_id]['progress'] = 50
elif detail_level == 'medium':
processing_jobs[job_id]['progress'] = 70
else:
processing_jobs[job_id]['progress'] = 90
# Create mesh with appropriate detail level
mesh_resolution = 100 # Fixed resolution for fair comparison
if detail_level == 'high':
mesh_resolution = 150
elif detail_level == 'low':
mesh_resolution = 80
mesh = depth_to_mesh(depth_map, image,
resolution=mesh_resolution,
detail_level=detail_level)
# Export as GLB
model_path = os.path.join(output_dir, f"model_{detail_level}.glb")
mesh.export(model_path, file_type='glb')
# Add to result URLs
result_urls[detail_level] = f"/compare-download/{job_id}/{detail_level}"
except Exception as e:
print(f"Error processing {detail_level} detail level: {str(e)}")
# Continue with other detail levels even if one fails
# Update job status
processing_jobs[job_id]['status'] = 'completed'
processing_jobs[job_id]['progress'] = 100
processing_jobs[job_id]['result_urls'] = result_urls
processing_jobs[job_id]['completed_at'] = time.time()
# Clean up temporary file
if os.path.exists(filepath):
os.remove(filepath)
# Force garbage collection
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
except Exception as e:
# Handle errors
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
# Clean up on error
if os.path.exists(filepath):
os.remove(filepath)
# Start processing thread
processing_thread = threading.Thread(target=process_comparison)
processing_thread.daemon = True
processing_thread.start()
# Return job ID immediately
return jsonify({"job_id": job_id, "check_progress_at": f"/progress/{job_id}"}), 202
@app.route('/compare-download/<job_id>/<detail_level>', methods=['GET'])
def download_comparison_model(job_id, detail_level):
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
return jsonify({"error": "Model not found or processing not complete"}), 404
if 'comparison' not in processing_jobs[job_id] or not processing_jobs[job_id]['comparison']:
return jsonify({"error": "This is not a comparison job"}), 400
if detail_level not in ['low', 'medium', 'high']:
return jsonify({"error": "Invalid detail level"}), 400
# Get the output directory for this job
output_dir = os.path.join(RESULTS_FOLDER, job_id)
model_path = os.path.join(output_dir, f"model_{detail_level}.glb")
if os.path.exists(model_path):
return send_file(model_path, as_attachment=True, download_name=f"model_{detail_level}.glb")
return jsonify({"error": "File not found"}), 404
if __name__ == '__main__':
# Start the cleanup thread
cleanup_old_jobs()
# Use port 7860 which is standard for Hugging Face Spaces
port = int(os.environ.get('PORT', 7860))
app.run(host='0.0.0.0', port=port) |