Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,6 @@ import time
|
|
4 |
import threading
|
5 |
import json
|
6 |
import gc
|
7 |
-
import numpy as np
|
8 |
-
import trimesh
|
9 |
from flask import Flask, request, jsonify, send_file, Response, stream_with_context
|
10 |
from werkzeug.utils import secure_filename
|
11 |
from PIL import Image
|
@@ -15,9 +13,12 @@ import uuid
|
|
15 |
import traceback
|
16 |
from huggingface_hub import snapshot_download
|
17 |
from flask_cors import CORS
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
import cv2
|
20 |
-
from transformers import pipeline, AutoFeatureExtractor, AutoModelForDepthEstimation
|
21 |
|
22 |
app = Flask(__name__)
|
23 |
CORS(app) # Enable CORS for all routes
|
@@ -45,12 +46,12 @@ app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max
|
|
45 |
processing_jobs = {}
|
46 |
|
47 |
# Global model variables
|
48 |
-
|
49 |
model_loaded = False
|
50 |
model_loading = False
|
51 |
|
52 |
# Configuration for processing
|
53 |
-
TIMEOUT_SECONDS =
|
54 |
MAX_DIMENSION = 512 # Max image dimension to process
|
55 |
|
56 |
# TimeoutError for handling timeouts
|
@@ -134,23 +135,24 @@ def preprocess_image(image_path):
|
|
134 |
return img
|
135 |
|
136 |
def load_model():
|
137 |
-
global
|
138 |
|
139 |
if model_loaded:
|
140 |
-
return
|
141 |
|
142 |
if model_loading:
|
143 |
# Wait for model to load if it's already in progress
|
144 |
while model_loading and not model_loaded:
|
145 |
time.sleep(0.5)
|
146 |
-
return
|
147 |
|
148 |
try:
|
149 |
model_loading = True
|
150 |
print("Starting model loading...")
|
151 |
|
152 |
-
# Using
|
153 |
-
|
|
|
154 |
|
155 |
# Download model with retry mechanism
|
156 |
max_retries = 3
|
@@ -158,26 +160,11 @@ def load_model():
|
|
158 |
|
159 |
for attempt in range(max_retries):
|
160 |
try:
|
161 |
-
|
162 |
-
model_name,
|
163 |
-
cache_dir=CACHE_DIR
|
|
|
164 |
)
|
165 |
-
model = AutoModelForDepthEstimation.from_pretrained(
|
166 |
-
model_name,
|
167 |
-
cache_dir=CACHE_DIR
|
168 |
-
)
|
169 |
-
|
170 |
-
# Check device availability
|
171 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
172 |
-
model = model.to(device)
|
173 |
-
|
174 |
-
# Create depth estimator object
|
175 |
-
depth_model = {
|
176 |
-
"feature_extractor": feature_extractor,
|
177 |
-
"model": model,
|
178 |
-
"device": device
|
179 |
-
}
|
180 |
-
|
181 |
break
|
182 |
except Exception as e:
|
183 |
if attempt < max_retries - 1:
|
@@ -187,13 +174,24 @@ def load_model():
|
|
187 |
else:
|
188 |
raise
|
189 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
# Optimize memory usage
|
191 |
-
if device ==
|
192 |
torch.cuda.empty_cache()
|
193 |
|
194 |
model_loaded = True
|
195 |
print(f"Model loaded successfully on {device}")
|
196 |
-
return
|
197 |
|
198 |
except Exception as e:
|
199 |
print(f"Error loading model: {str(e)}")
|
@@ -202,39 +200,7 @@ def load_model():
|
|
202 |
finally:
|
203 |
model_loading = False
|
204 |
|
205 |
-
# Enhanced depth
|
206 |
-
def estimate_depth(image, model):
|
207 |
-
# Extract features and run through model
|
208 |
-
feature_extractor = model["feature_extractor"]
|
209 |
-
depth_model = model["model"]
|
210 |
-
device = model["device"]
|
211 |
-
|
212 |
-
if isinstance(image, Image.Image):
|
213 |
-
# Convert PIL image to numpy if needed
|
214 |
-
image_np = np.array(image)
|
215 |
-
else:
|
216 |
-
image_np = image
|
217 |
-
|
218 |
-
# Process with feature extractor
|
219 |
-
inputs = feature_extractor(images=image_np, return_tensors="pt")
|
220 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
221 |
-
|
222 |
-
# Run inference
|
223 |
-
with torch.no_grad():
|
224 |
-
outputs = depth_model(**inputs)
|
225 |
-
predicted_depth = outputs.predicted_depth
|
226 |
-
|
227 |
-
# Convert to numpy
|
228 |
-
depth_map = predicted_depth.squeeze().cpu().numpy()
|
229 |
-
|
230 |
-
# Normalize depth map to 0-1 range
|
231 |
-
depth_min = depth_map.min()
|
232 |
-
depth_max = depth_map.max()
|
233 |
-
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
234 |
-
|
235 |
-
return depth_map
|
236 |
-
|
237 |
-
# Enhanced depth map processing to improve detail quality
|
238 |
def enhance_depth_map(depth_map, detail_level='medium'):
|
239 |
"""Apply sophisticated processing to enhance depth map details"""
|
240 |
# Convert to numpy array if needed
|
@@ -257,12 +223,16 @@ def enhance_depth_map(depth_map, detail_level='medium'):
|
|
257 |
|
258 |
# Apply different enhancement methods based on detail level
|
259 |
if detail_level == 'high':
|
260 |
-
# Apply unsharp masking for edge enhancement
|
|
|
261 |
blurred = gaussian_filter(enhanced_depth, sigma=1.5)
|
|
|
262 |
mask = enhanced_depth - blurred
|
|
|
263 |
enhanced_depth = enhanced_depth + 1.5 * mask
|
264 |
|
265 |
# Apply bilateral filter to preserve edges while smoothing noise
|
|
|
266 |
smooth1 = gaussian_filter(enhanced_depth, sigma=0.5)
|
267 |
smooth2 = gaussian_filter(enhanced_depth, sigma=2.0)
|
268 |
edge_mask = enhanced_depth - smooth2
|
@@ -270,6 +240,7 @@ def enhance_depth_map(depth_map, detail_level='medium'):
|
|
270 |
|
271 |
elif detail_level == 'medium':
|
272 |
# Less aggressive but still effective enhancement
|
|
|
273 |
blurred = gaussian_filter(enhanced_depth, sigma=1.0)
|
274 |
mask = enhanced_depth - blurred
|
275 |
enhanced_depth = enhanced_depth + 0.8 * mask
|
@@ -286,71 +257,65 @@ def enhance_depth_map(depth_map, detail_level='medium'):
|
|
286 |
|
287 |
return enhanced_depth
|
288 |
|
289 |
-
#
|
290 |
-
def
|
291 |
-
"""
|
292 |
-
#
|
293 |
enhanced_depth = enhance_depth_map(depth_map, detail_level)
|
294 |
|
295 |
-
# Get dimensions
|
296 |
h, w = enhanced_depth.shape
|
297 |
|
298 |
-
# Create
|
299 |
-
x = np.linspace(
|
300 |
-
y = np.linspace(
|
301 |
x_grid, y_grid = np.meshgrid(x, y)
|
302 |
|
303 |
-
#
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
faces = []
|
309 |
|
310 |
-
#
|
311 |
-
|
312 |
-
vertex_colors = []
|
313 |
|
314 |
-
#
|
315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
-
#
|
318 |
-
|
319 |
-
|
320 |
-
interp_y = np.linspace(0, 1, resolution)
|
321 |
-
interp_x = np.linspace(0, 1, resolution)
|
322 |
-
z_values = interp_func(interp_y, interp_x)
|
323 |
|
324 |
-
#
|
325 |
-
depth_scale = 1.0
|
326 |
if detail_level == 'high':
|
327 |
-
|
328 |
-
elif detail_level == '
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
img_y = int(i * (img_array.shape[0] - 1) / (resolution - 1))
|
342 |
-
img_x = int(j * (img_array.shape[1] - 1) / (resolution - 1))
|
343 |
-
|
344 |
-
if len(img_array.shape) == 3 and img_array.shape[2] >= 3:
|
345 |
-
color = [img_array[img_y, img_x, 0], img_array[img_y, img_x, 1], img_array[img_y, img_x, 2], 255]
|
346 |
-
else:
|
347 |
-
# Grayscale
|
348 |
-
gray = img_array[img_y, img_x]
|
349 |
-
color = [gray, gray, gray, 255]
|
350 |
-
|
351 |
-
vertex_colors.append(color)
|
352 |
|
353 |
-
#
|
|
|
354 |
for i in range(resolution-1):
|
355 |
for j in range(resolution-1):
|
356 |
p1 = i * resolution + j
|
@@ -358,119 +323,103 @@ def create_complete_3d_model(depth_map, image, resolution=100, detail_level='med
|
|
358 |
p3 = (i + 1) * resolution + j
|
359 |
p4 = (i + 1) * resolution + (j + 1)
|
360 |
|
361 |
-
#
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
darkened = [int(c * 0.7) for c in front_color[:3]] + [front_color[3]]
|
381 |
-
vertex_colors.append(darkened)
|
382 |
-
|
383 |
-
# Add back face triangles (reverse winding)
|
384 |
-
for i in range(resolution-1):
|
385 |
-
for j in range(resolution-1):
|
386 |
-
p1 = back_start_idx + i * resolution + j
|
387 |
-
p2 = back_start_idx + i * resolution + (j + 1)
|
388 |
-
p3 = back_start_idx + (i + 1) * resolution + j
|
389 |
-
p4 = back_start_idx + (i + 1) * resolution + (j + 1)
|
390 |
-
|
391 |
-
# Reverse winding order for back face
|
392 |
-
faces.append([p1, p4, p2])
|
393 |
-
faces.append([p1, p3, p4])
|
394 |
-
|
395 |
-
# 3. Create side faces (connecting front to back)
|
396 |
-
|
397 |
-
# Top side
|
398 |
-
for j in range(resolution-1):
|
399 |
-
# Front edge vertices
|
400 |
-
f1 = j
|
401 |
-
f2 = j + 1
|
402 |
-
# Back edge vertices
|
403 |
-
b1 = back_start_idx + j
|
404 |
-
b2 = back_start_idx + j + 1
|
405 |
-
|
406 |
-
faces.append([f1, b1, b2])
|
407 |
-
faces.append([f1, b2, f2])
|
408 |
-
|
409 |
-
# Bottom side
|
410 |
-
bottom_row = (resolution - 1) * resolution
|
411 |
-
for j in range(resolution-1):
|
412 |
-
# Front edge vertices
|
413 |
-
f1 = bottom_row + j
|
414 |
-
f2 = bottom_row + j + 1
|
415 |
-
# Back edge vertices
|
416 |
-
b1 = back_start_idx + bottom_row + j
|
417 |
-
b2 = back_start_idx + bottom_row + j + 1
|
418 |
-
|
419 |
-
faces.append([f1, f2, b2])
|
420 |
-
faces.append([f1, b2, b1])
|
421 |
-
|
422 |
-
# Left side
|
423 |
-
for i in range(resolution-1):
|
424 |
-
# Front edge vertices
|
425 |
-
f1 = i * resolution
|
426 |
-
f2 = (i + 1) * resolution
|
427 |
-
# Back edge vertices
|
428 |
-
b1 = back_start_idx + i * resolution
|
429 |
-
b2 = back_start_idx + (i + 1) * resolution
|
430 |
-
|
431 |
-
faces.append([f1, b1, b2])
|
432 |
-
faces.append([f1, b2, f2])
|
433 |
-
|
434 |
-
# Right side
|
435 |
-
right_col = resolution - 1
|
436 |
-
for i in range(resolution-1):
|
437 |
-
# Front edge vertices
|
438 |
-
f1 = i * resolution + right_col
|
439 |
-
f2 = (i + 1) * resolution + right_col
|
440 |
-
# Back edge vertices
|
441 |
-
b1 = back_start_idx + i * resolution + right_col
|
442 |
-
b2 = back_start_idx + (i + 1) * resolution + right_col
|
443 |
-
|
444 |
-
faces.append([f1, f2, b2])
|
445 |
-
faces.append([f1, b2, b1])
|
446 |
|
447 |
-
# Convert to numpy arrays
|
448 |
-
vertices = np.array(vertices)
|
449 |
faces = np.array(faces)
|
450 |
-
vertex_colors = np.array(vertex_colors)
|
451 |
|
452 |
# Create mesh
|
453 |
-
mesh = trimesh.Trimesh(
|
454 |
-
vertices=vertices,
|
455 |
-
faces=faces,
|
456 |
-
vertex_colors=vertex_colors,
|
457 |
-
process=True
|
458 |
-
)
|
459 |
|
460 |
-
#
|
461 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
|
463 |
-
#
|
464 |
if detail_level != 'high':
|
|
|
|
|
465 |
mesh = mesh.smoothed(method='laplacian', iterations=1)
|
466 |
|
|
|
|
|
|
|
467 |
return mesh
|
468 |
|
469 |
@app.route('/health', methods=['GET'])
|
470 |
def health_check():
|
471 |
return jsonify({
|
472 |
"status": "healthy",
|
473 |
-
"model": "
|
474 |
"device": "cuda" if torch.cuda.is_available() else "cpu"
|
475 |
}), 200
|
476 |
|
@@ -531,7 +480,7 @@ def convert_image_to_3d():
|
|
531 |
mesh_resolution = min(int(request.form.get('mesh_resolution', 100)), 200) # Limit max resolution
|
532 |
output_format = request.form.get('output_format', 'obj').lower()
|
533 |
detail_level = request.form.get('detail_level', 'medium').lower() # Parameter for detail level
|
534 |
-
|
535 |
except ValueError:
|
536 |
return jsonify({"error": "Invalid parameter values"}), 400
|
537 |
|
@@ -588,11 +537,22 @@ def convert_image_to_3d():
|
|
588 |
|
589 |
# Process image with thread-safe timeout
|
590 |
try:
|
591 |
-
def
|
592 |
# Get depth map
|
593 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
594 |
|
595 |
-
depth_map, error = process_with_timeout(
|
596 |
|
597 |
if error:
|
598 |
if isinstance(error, TimeoutError):
|
@@ -604,9 +564,9 @@ def convert_image_to_3d():
|
|
604 |
|
605 |
processing_jobs[job_id]['progress'] = 60
|
606 |
|
607 |
-
# Create
|
608 |
mesh_resolution_int = int(mesh_resolution)
|
609 |
-
mesh =
|
610 |
processing_jobs[job_id]['progress'] = 80
|
611 |
|
612 |
except Exception as e:
|
@@ -718,13 +678,6 @@ def download_model(job_id):
|
|
718 |
return send_file(glb_path, as_attachment=True, download_name="model.glb")
|
719 |
|
720 |
return jsonify({"error": "File not found"}), 404
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
|
729 |
@app.route('/preview/<job_id>', methods=['GET'])
|
730 |
def preview_model(job_id):
|
|
|
4 |
import threading
|
5 |
import json
|
6 |
import gc
|
|
|
|
|
7 |
from flask import Flask, request, jsonify, send_file, Response, stream_with_context
|
8 |
from werkzeug.utils import secure_filename
|
9 |
from PIL import Image
|
|
|
13 |
import traceback
|
14 |
from huggingface_hub import snapshot_download
|
15 |
from flask_cors import CORS
|
16 |
+
import numpy as np
|
17 |
+
import trimesh
|
18 |
+
from transformers import pipeline
|
19 |
+
from scipy.ndimage import gaussian_filter, uniform_filter, median_filter
|
20 |
+
from scipy import interpolate
|
21 |
import cv2
|
|
|
22 |
|
23 |
app = Flask(__name__)
|
24 |
CORS(app) # Enable CORS for all routes
|
|
|
46 |
processing_jobs = {}
|
47 |
|
48 |
# Global model variables
|
49 |
+
depth_estimator = None
|
50 |
model_loaded = False
|
51 |
model_loading = False
|
52 |
|
53 |
# Configuration for processing
|
54 |
+
TIMEOUT_SECONDS = 240 # 4 minutes max for processing
|
55 |
MAX_DIMENSION = 512 # Max image dimension to process
|
56 |
|
57 |
# TimeoutError for handling timeouts
|
|
|
135 |
return img
|
136 |
|
137 |
def load_model():
|
138 |
+
global depth_estimator, model_loaded, model_loading
|
139 |
|
140 |
if model_loaded:
|
141 |
+
return depth_estimator
|
142 |
|
143 |
if model_loading:
|
144 |
# Wait for model to load if it's already in progress
|
145 |
while model_loading and not model_loaded:
|
146 |
time.sleep(0.5)
|
147 |
+
return depth_estimator
|
148 |
|
149 |
try:
|
150 |
model_loading = True
|
151 |
print("Starting model loading...")
|
152 |
|
153 |
+
# Using DPT-Large which provides better detail than DPT-Hybrid
|
154 |
+
# Alternatively, consider "vinvino02/glpn-nyu" for different detail characteristics
|
155 |
+
model_name = "Intel/dpt-large"
|
156 |
|
157 |
# Download model with retry mechanism
|
158 |
max_retries = 3
|
|
|
160 |
|
161 |
for attempt in range(max_retries):
|
162 |
try:
|
163 |
+
snapshot_download(
|
164 |
+
repo_id=model_name,
|
165 |
+
cache_dir=CACHE_DIR,
|
166 |
+
resume_download=True,
|
167 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
break
|
169 |
except Exception as e:
|
170 |
if attempt < max_retries - 1:
|
|
|
174 |
else:
|
175 |
raise
|
176 |
|
177 |
+
# Initialize model with appropriate precision
|
178 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
179 |
+
|
180 |
+
# Load depth estimator pipeline
|
181 |
+
depth_estimator = pipeline(
|
182 |
+
"depth-estimation",
|
183 |
+
model=model_name,
|
184 |
+
device=device if device == "cuda" else -1,
|
185 |
+
cache_dir=CACHE_DIR
|
186 |
+
)
|
187 |
+
|
188 |
# Optimize memory usage
|
189 |
+
if device == "cuda":
|
190 |
torch.cuda.empty_cache()
|
191 |
|
192 |
model_loaded = True
|
193 |
print(f"Model loaded successfully on {device}")
|
194 |
+
return depth_estimator
|
195 |
|
196 |
except Exception as e:
|
197 |
print(f"Error loading model: {str(e)}")
|
|
|
200 |
finally:
|
201 |
model_loading = False
|
202 |
|
203 |
+
# Enhanced depth processing function to improve detail quality
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
def enhance_depth_map(depth_map, detail_level='medium'):
|
205 |
"""Apply sophisticated processing to enhance depth map details"""
|
206 |
# Convert to numpy array if needed
|
|
|
223 |
|
224 |
# Apply different enhancement methods based on detail level
|
225 |
if detail_level == 'high':
|
226 |
+
# Apply unsharp masking for edge enhancement - simulating Hunyuan's detail technique
|
227 |
+
# First apply gaussian blur
|
228 |
blurred = gaussian_filter(enhanced_depth, sigma=1.5)
|
229 |
+
# Create the unsharp mask
|
230 |
mask = enhanced_depth - blurred
|
231 |
+
# Apply the mask with strength factor
|
232 |
enhanced_depth = enhanced_depth + 1.5 * mask
|
233 |
|
234 |
# Apply bilateral filter to preserve edges while smoothing noise
|
235 |
+
# Simulate using gaussian combinations
|
236 |
smooth1 = gaussian_filter(enhanced_depth, sigma=0.5)
|
237 |
smooth2 = gaussian_filter(enhanced_depth, sigma=2.0)
|
238 |
edge_mask = enhanced_depth - smooth2
|
|
|
240 |
|
241 |
elif detail_level == 'medium':
|
242 |
# Less aggressive but still effective enhancement
|
243 |
+
# Apply mild unsharp masking
|
244 |
blurred = gaussian_filter(enhanced_depth, sigma=1.0)
|
245 |
mask = enhanced_depth - blurred
|
246 |
enhanced_depth = enhanced_depth + 0.8 * mask
|
|
|
257 |
|
258 |
return enhanced_depth
|
259 |
|
260 |
+
# Convert depth map to 3D mesh with significantly enhanced detail
|
261 |
+
def depth_to_mesh(depth_map, image, resolution=100, detail_level='medium'):
|
262 |
+
"""Convert depth map to 3D mesh with highly improved detail preservation"""
|
263 |
+
# First, enhance the depth map for better details
|
264 |
enhanced_depth = enhance_depth_map(depth_map, detail_level)
|
265 |
|
266 |
+
# Get dimensions of depth map
|
267 |
h, w = enhanced_depth.shape
|
268 |
|
269 |
+
# Create a higher resolution grid for better detail
|
270 |
+
x = np.linspace(0, w-1, resolution)
|
271 |
+
y = np.linspace(0, h-1, resolution)
|
272 |
x_grid, y_grid = np.meshgrid(x, y)
|
273 |
|
274 |
+
# Use bicubic interpolation for smoother surface with better details
|
275 |
+
# Create interpolation function
|
276 |
+
interp_func = interpolate.RectBivariateSpline(
|
277 |
+
np.arange(h), np.arange(w), enhanced_depth, kx=3, ky=3
|
278 |
+
)
|
|
|
279 |
|
280 |
+
# Sample depth at grid points with the interpolation function
|
281 |
+
z_values = interp_func(y, x, grid=True)
|
|
|
282 |
|
283 |
+
# Apply a post-processing step to enhance small details even further
|
284 |
+
if detail_level == 'high':
|
285 |
+
# Calculate local gradients to detect edges
|
286 |
+
dx = np.gradient(z_values, axis=1)
|
287 |
+
dy = np.gradient(z_values, axis=0)
|
288 |
+
|
289 |
+
# Enhance edges by increasing depth differences at high gradient areas
|
290 |
+
gradient_magnitude = np.sqrt(dx**2 + dy**2)
|
291 |
+
edge_mask = np.clip(gradient_magnitude * 5, 0, 0.2) # Scale and limit effect
|
292 |
+
|
293 |
+
# Apply edge enhancement
|
294 |
+
z_values = z_values + edge_mask * (z_values - gaussian_filter(z_values, sigma=1.0))
|
295 |
|
296 |
+
# Normalize z-values with advanced scaling for better depth impression
|
297 |
+
z_min, z_max = np.percentile(z_values, [2, 98]) # Remove outliers
|
298 |
+
z_values = (z_values - z_min) / (z_max - z_min) if z_max > z_min else z_values
|
|
|
|
|
|
|
299 |
|
300 |
+
# Apply depth scaling appropriate to the detail level
|
|
|
301 |
if detail_level == 'high':
|
302 |
+
z_scaling = 2.5 # More pronounced depth variations
|
303 |
+
elif detail_level == 'medium':
|
304 |
+
z_scaling = 2.0 # Standard depth
|
305 |
+
else:
|
306 |
+
z_scaling = 1.5 # More subtle depth variations
|
307 |
+
|
308 |
+
z_values = z_values * z_scaling
|
309 |
+
|
310 |
+
# Normalize x and y coordinates
|
311 |
+
x_grid = (x_grid / w - 0.5) * 2.0 # Map to -1 to 1
|
312 |
+
y_grid = (y_grid / h - 0.5) * 2.0 # Map to -1 to 1
|
313 |
+
|
314 |
+
# Create vertices
|
315 |
+
vertices = np.vstack([x_grid.flatten(), -y_grid.flatten(), -z_values.flatten()]).T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
+
# Create faces (triangles) with optimized winding for better normals
|
318 |
+
faces = []
|
319 |
for i in range(resolution-1):
|
320 |
for j in range(resolution-1):
|
321 |
p1 = i * resolution + j
|
|
|
323 |
p3 = (i + 1) * resolution + j
|
324 |
p4 = (i + 1) * resolution + (j + 1)
|
325 |
|
326 |
+
# Calculate normals to ensure consistent orientation
|
327 |
+
v1 = vertices[p1]
|
328 |
+
v2 = vertices[p2]
|
329 |
+
v3 = vertices[p3]
|
330 |
+
v4 = vertices[p4]
|
331 |
+
|
332 |
+
# Calculate normals for both possible triangulations
|
333 |
+
# and choose the one that's more consistent
|
334 |
+
norm1 = np.cross(v2-v1, v4-v1)
|
335 |
+
norm2 = np.cross(v4-v3, v1-v3)
|
336 |
+
|
337 |
+
if np.dot(norm1, norm2) >= 0:
|
338 |
+
# Standard triangulation
|
339 |
+
faces.append([p1, p2, p4])
|
340 |
+
faces.append([p1, p4, p3])
|
341 |
+
else:
|
342 |
+
# Alternative triangulation for smoother surface
|
343 |
+
faces.append([p1, p2, p3])
|
344 |
+
faces.append([p2, p4, p3])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
|
|
|
|
346 |
faces = np.array(faces)
|
|
|
347 |
|
348 |
# Create mesh
|
349 |
+
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
+
# Apply advanced texturing if image is provided
|
352 |
+
if image:
|
353 |
+
# Convert to numpy array if needed
|
354 |
+
if isinstance(image, Image.Image):
|
355 |
+
img_array = np.array(image)
|
356 |
+
else:
|
357 |
+
img_array = image
|
358 |
+
|
359 |
+
# Create vertex colors with improved sampling
|
360 |
+
if resolution <= img_array.shape[0] and resolution <= img_array.shape[1]:
|
361 |
+
# Create vertex colors by sampling the image with bilinear interpolation
|
362 |
+
vertex_colors = np.zeros((vertices.shape[0], 4), dtype=np.uint8)
|
363 |
+
|
364 |
+
# Get normalized coordinates for sampling
|
365 |
+
for i in range(resolution):
|
366 |
+
for j in range(resolution):
|
367 |
+
# Calculate exact image coordinates with proper scaling
|
368 |
+
img_x = j * (img_array.shape[1] - 1) / (resolution - 1)
|
369 |
+
img_y = i * (img_array.shape[0] - 1) / (resolution - 1)
|
370 |
+
|
371 |
+
# Bilinear interpolation for smooth color transitions
|
372 |
+
x0, y0 = int(img_x), int(img_y)
|
373 |
+
x1, y1 = min(x0 + 1, img_array.shape[1] - 1), min(y0 + 1, img_array.shape[0] - 1)
|
374 |
+
|
375 |
+
# Calculate interpolation weights
|
376 |
+
wx = img_x - x0
|
377 |
+
wy = img_y - y0
|
378 |
+
|
379 |
+
vertex_idx = i * resolution + j
|
380 |
+
|
381 |
+
if len(img_array.shape) == 3 and img_array.shape[2] == 3: # RGB
|
382 |
+
# Perform bilinear interpolation for each color channel
|
383 |
+
r = int((1-wx)*(1-wy)*img_array[y0, x0, 0] + wx*(1-wy)*img_array[y0, x1, 0] +
|
384 |
+
(1-wx)*wy*img_array[y1, x0, 0] + wx*wy*img_array[y1, x1, 0])
|
385 |
+
g = int((1-wx)*(1-wy)*img_array[y0, x0, 1] + wx*(1-wy)*img_array[y0, x1, 1] +
|
386 |
+
(1-wx)*wy*img_array[y1, x0, 1] + wx*wy*img_array[y1, x1, 1])
|
387 |
+
b = int((1-wx)*(1-wy)*img_array[y0, x0, 2] + wx*(1-wy)*img_array[y0, x1, 2] +
|
388 |
+
(1-wx)*wy*img_array[y1, x0, 2] + wx*wy*img_array[y1, x1, 2])
|
389 |
+
|
390 |
+
vertex_colors[vertex_idx, :3] = [r, g, b]
|
391 |
+
vertex_colors[vertex_idx, 3] = 255 # Alpha
|
392 |
+
elif len(img_array.shape) == 3 and img_array.shape[2] == 4: # RGBA
|
393 |
+
for c in range(4): # For each RGBA channel
|
394 |
+
vertex_colors[vertex_idx, c] = int((1-wx)*(1-wy)*img_array[y0, x0, c] +
|
395 |
+
wx*(1-wy)*img_array[y0, x1, c] +
|
396 |
+
(1-wx)*wy*img_array[y1, x0, c] +
|
397 |
+
wx*wy*img_array[y1, x1, c])
|
398 |
+
else:
|
399 |
+
# Handle grayscale with bilinear interpolation
|
400 |
+
gray = int((1-wx)*(1-wy)*img_array[y0, x0] + wx*(1-wy)*img_array[y0, x1] +
|
401 |
+
(1-wx)*wy*img_array[y1, x0] + wx*wy*img_array[y1, x1])
|
402 |
+
vertex_colors[vertex_idx, :3] = [gray, gray, gray]
|
403 |
+
vertex_colors[vertex_idx, 3] = 255
|
404 |
+
|
405 |
+
mesh.visual.vertex_colors = vertex_colors
|
406 |
|
407 |
+
# Apply smoothing to get rid of staircase artifacts
|
408 |
if detail_level != 'high':
|
409 |
+
# For medium and low detail, apply Laplacian smoothing
|
410 |
+
# but preserve the overall shape
|
411 |
mesh = mesh.smoothed(method='laplacian', iterations=1)
|
412 |
|
413 |
+
# Calculate and fix normals for better rendering
|
414 |
+
mesh.fix_normals()
|
415 |
+
|
416 |
return mesh
|
417 |
|
418 |
@app.route('/health', methods=['GET'])
|
419 |
def health_check():
|
420 |
return jsonify({
|
421 |
"status": "healthy",
|
422 |
+
"model": "Enhanced Depth-Based 3D Model Generator (DPT-Large)",
|
423 |
"device": "cuda" if torch.cuda.is_available() else "cpu"
|
424 |
}), 200
|
425 |
|
|
|
480 |
mesh_resolution = min(int(request.form.get('mesh_resolution', 100)), 200) # Limit max resolution
|
481 |
output_format = request.form.get('output_format', 'obj').lower()
|
482 |
detail_level = request.form.get('detail_level', 'medium').lower() # Parameter for detail level
|
483 |
+
texture_quality = request.form.get('texture_quality', 'medium').lower() # New parameter for texture quality
|
484 |
except ValueError:
|
485 |
return jsonify({"error": "Invalid parameter values"}), 400
|
486 |
|
|
|
537 |
|
538 |
# Process image with thread-safe timeout
|
539 |
try:
|
540 |
+
def estimate_depth():
|
541 |
# Get depth map
|
542 |
+
result = model(image)
|
543 |
+
depth_map = result["depth"]
|
544 |
+
|
545 |
+
# Convert to numpy array if needed
|
546 |
+
if isinstance(depth_map, torch.Tensor):
|
547 |
+
depth_map = depth_map.cpu().numpy()
|
548 |
+
elif hasattr(depth_map, 'numpy'):
|
549 |
+
depth_map = depth_map.numpy()
|
550 |
+
elif isinstance(depth_map, Image.Image):
|
551 |
+
depth_map = np.array(depth_map)
|
552 |
+
|
553 |
+
return depth_map
|
554 |
|
555 |
+
depth_map, error = process_with_timeout(estimate_depth, [], TIMEOUT_SECONDS)
|
556 |
|
557 |
if error:
|
558 |
if isinstance(error, TimeoutError):
|
|
|
564 |
|
565 |
processing_jobs[job_id]['progress'] = 60
|
566 |
|
567 |
+
# Create mesh from depth map with enhanced detail handling
|
568 |
mesh_resolution_int = int(mesh_resolution)
|
569 |
+
mesh = depth_to_mesh(depth_map, image, resolution=mesh_resolution_int, detail_level=detail_level)
|
570 |
processing_jobs[job_id]['progress'] = 80
|
571 |
|
572 |
except Exception as e:
|
|
|
678 |
return send_file(glb_path, as_attachment=True, download_name="model.glb")
|
679 |
|
680 |
return jsonify({"error": "File not found"}), 404
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
681 |
|
682 |
@app.route('/preview/<job_id>', methods=['GET'])
|
683 |
def preview_model(job_id):
|