Spaces:
Sleeping
Sleeping
File size: 15,722 Bytes
c105678 3a58e1b cd1cc5d 3a58e1b c105678 e5edf92 8dac441 cd1cc5d bf928c6 fa62b8d 13afc6c c105678 18afcf1 c105678 13afc6c c105678 fa62b8d e5edf92 c105678 13afc6c c105678 e5edf92 13afc6c e5edf92 fa62b8d c105678 fa62b8d c105678 13afc6c fa62b8d 13afc6c cd1cc5d e5edf92 13afc6c cd1cc5d 13afc6c cd1cc5d 13afc6c fa62b8d c105678 13afc6c fa62b8d c0d1170 fa62b8d 13afc6c fa62b8d cd1cc5d fa62b8d 13afc6c fa62b8d 8dac441 13afc6c fa62b8d 13afc6c fa62b8d cd1cc5d fa62b8d 13afc6c fa62b8d 13afc6c fa62b8d 13afc6c fa62b8d 13afc6c fa24ab7 13afc6c 18afcf1 138cb5e fa62b8d 8dac441 13afc6c fa62b8d f515ccd fa62b8d 8dac441 fa62b8d 13afc6c fa62b8d cfa68ff 13afc6c cfa68ff fa62b8d 13afc6c fa62b8d 13afc6c fa62b8d 13afc6c cfa68ff fa62b8d afec0dd c105678 fa62b8d c105678 13afc6c fa62b8d cfa68ff fa62b8d 13afc6c fa62b8d 3a58e1b fa62b8d 3a58e1b cd1cc5d 3a58e1b fa62b8d 3a58e1b fa62b8d 3a58e1b fa62b8d 3a58e1b fa62b8d 3a58e1b fa62b8d fa24ab7 13afc6c fa62b8d cfa68ff 13afc6c cfa68ff 8dac441 cfa68ff fa62b8d 13afc6c fa62b8d 13afc6c cfa68ff 13afc6c fa62b8d cfa68ff fa62b8d 13afc6c fa62b8d 13afc6c fa62b8d 13afc6c fa62b8d cfa68ff 1c91a49 fa62b8d 13afc6c fa62b8d 13afc6c fa62b8d c105678 fa62b8d 13afc6c fa62b8d 13afc6c fa62b8d cfa68ff fa62b8d 13afc6c fa62b8d 13afc6c fa62b8d cfa68ff fa62b8d 13afc6c fa62b8d 13afc6c fa62b8d 8dac441 fa62b8d 18afcf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import os
import torch
import time
import threading
import json
import gc
from flask import Flask, request, jsonify, send_file, Response, stream_with_context
from werkzeug.utils import secure_filename
from PIL import Image
import io
import zipfile
import uuid
import traceback
from huggingface_hub import snapshot_download
from flask_cors import CORS
import numpy as np
import trimesh
import cv2
import pymeshlab
from hy3dgen.shapegen import Hunyuan3DDiTFlowMatchingPipeline
# Force CPU usage
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Disable GPU detection
torch.set_default_device("cpu") # Set CPU as default device
app = Flask(__name__)
CORS(app) # Enable CORS for all routes
# Configure directories
UPLOAD_FOLDER = '/tmp/uploads'
RESULTS_FOLDER = '/tmp/results'
CACHE_DIR = '/tmp/huggingface'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
# Create necessary directories
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULTS_FOLDER, exist_ok=True)
os.makedirs(CACHE_DIR, exist_ok=True)
# Set Hugging Face cache environment variables
os.environ['HF_HOME'] = CACHE_DIR
os.environ['TRANSFORMERS_CACHE'] = os.path.join(CACHE_DIR, 'transformers')
os.environ['HF_DATASETS_CACHE'] = os.path.join(CACHE_DIR, 'datasets')
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max
# Job tracking dictionary
processing_jobs = {}
# Global model variables
hunyuan_pipeline = None
model_loaded = False
model_loading = False
# Configuration for processing
TIMEOUT_SECONDS = 600 # 10 minutes max for Hunyuan3D-2mini on CPU
MAX_DIMENSION = 256 # Reduced for CPU memory constraints
# TimeoutError for handling timeouts
class TimeoutError(Exception):
pass
# Thread-safe timeout implementation
def process_with_timeout(function, args, timeout):
result = [None]
error = [None]
completed = [False]
def target():
try:
result[0] = function(*args)
completed[0] = True
except Exception as e:
error[0] = e
thread = threading.Thread(target=target)
thread.daemon = True
thread.start()
thread.join(timeout)
if not completed[0]:
if thread.is_alive():
return None, TimeoutError(f"Processing timed out after {timeout} seconds")
elif error[0]:
return None, error[0]
if error[0]:
return None, error[0]
return result[0], None
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
# Simplified image preprocessing for Hunyuan3D-2mini
def preprocess_image(image_path):
with Image.open(image_path) as img:
img = img.convert("RGB")
# Resize to smaller dimensions for CPU
if img.width > MAX_DIMENSION or img.height > MAX_DIMENSION:
if img.width > img.height:
new_width = MAX_DIMENSION
new_height = int(img.height * (MAX_DIMENSION / img.width))
else:
new_height = MAX_DIMENSION
new_width = int(img.width * (MAX_DIMENSION / img.height))
img = img.resize((new_width, new_height), Image.LANCZOS)
return img
def load_model():
global hunyuan_pipeline, model_loaded, model_loading
if model_loaded:
return hunyuan_pipeline
if model_loading:
while model_loading and not model_loaded:
time.sleep(0.5)
return hunyuan_pipeline
try:
model_loading = True
print("Starting model loading...")
model_name = "tencent/Hunyuan3D-2mini"
# Download model with retry mechanism
max_retries = 3
retry_delay = 5
for attempt in range(max_retries):
try:
snapshot_download(
repo_id=model_name,
cache_dir=CACHE_DIR,
resume_download=True,
)
break
except Exception as e:
if attempt < max_retries - 1:
print(f"Download attempt {attempt+1} failed: {str(e)}. Retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2
else:
raise
# Load Hunyuan3D-2mini pipeline
hunyuan_pipeline = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
model_name,
subfolder="hunyuan3d-dit-v2-mini",
use_safetensors=True,
torch_dtype=torch.float16,
cache_dir=CACHE_DIR,
device_map="cpu" # Explicitly set to CPU
)
model_loaded = True
print("Model loaded successfully on CPU")
return hunyuan_pipeline
except Exception as e:
print(f"Error loading model: {str(e)}")
print(traceback.format_exc())
raise
finally:
model_loading = False
# Optimize mesh for Unity
def optimize_mesh(mesh_path, target_faces=10000):
ms = pymeshlab.MeshSet()
ms.load_new_mesh(mesh_path)
ms.meshing_decimation_quadric_edge_collapse(targetfacenum=target_faces)
optimized_path = mesh_path.replace(".glb", "_optimized.glb")
ms.save_current_mesh(optimized_path)
return optimized_path
@app.route('/health', methods=['GET'])
def health_check():
return jsonify({
"status": "healthy",
"model": "Hunyuan3D-2mini 3D Generator",
"device": "cpu"
}), 200
@app.route('/progress/<job_id>', methods=['GET'])
def progress(job_id):
def generate():
if job_id not in processing_jobs:
yield f"data: {json.dumps({'error': 'Job not found'})}\n\n"
return
job = processing_jobs[job_id]
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
last_progress = job['progress']
check_count = 0
while job['status'] == 'processing':
if job['progress'] != last_progress:
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
last_progress = job['progress']
time.sleep(0.5)
check_count += 1
if check_count > 60:
if 'thread_alive' in job and not job['thread_alive']():
job['status'] = 'error'
job['error'] = 'Processing thread died unexpectedly'
break
check_count = 0
if job['status'] == 'completed':
yield f"data: {json.dumps({'status': 'completed', 'progress': 100, 'result_url': job['result_url'], 'preview_url': job['preview_url']})}\n\n"
else:
yield f"data: {json.dumps({'status': 'error', 'error': job['error']})}\n\n"
return Response(stream_with_context(generate()), mimetype='text/event-stream')
@app.route('/convert', methods=['POST'])
def convert_image_to_3d():
if 'image' not in request.files:
return jsonify({"error": "No image provided"}), 400
file = request.files['image']
if file.filename == '':
return jsonify({"error": "No image selected"}), 400
if not allowed_file(file.filename):
return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
try:
output_format = request.form.get('output_format', 'glb').lower()
detail_level = request.form.get('detail_level', 'medium').lower()
except ValueError:
return jsonify({"error": "Invalid parameter values"}), 400
if output_format not in ['glb']:
return jsonify({"error": "Only GLB format is supported with Hunyuan3D-2mini"}), 400
job_id = str(uuid.uuid4())
output_dir = os.path.join(RESULTS_FOLDER, job_id)
os.makedirs(output_dir, exist_ok=True)
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}")
file.save(filepath)
processing_jobs[job_id] = {
'status': 'processing',
'progress': 0,
'result_url': None,
'preview_url': None,
'error': None,
'output_format': output_format,
'created_at': time.time()
}
def process_image():
thread = threading.current_thread()
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
try:
processing_jobs[job_id]['progress'] = 5
image = preprocess_image(filepath)
processing_jobs[job_id]['progress'] = 10
try:
model = load_model()
processing_jobs[job_id]['progress'] = 30
except Exception as e:
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Error loading model: {str(e)}"
return
try:
def generate_3d():
# Adjust settings based on detail level
steps = {'low': 20, 'medium': 30, 'high': 40}
resolution = {'low': 200, 'medium': 256, 'high': 300}
mesh = model(
image=image,
num_inference_steps=steps[detail_level],
octree_resolution=resolution[detail_level],
num_chunks=10000,
generator=torch.manual_seed(12345),
output_type="trimesh"
)[0]
return mesh
mesh, error = process_with_timeout(generate_3d, [], TIMEOUT_SECONDS)
if error:
if isinstance(error, TimeoutError):
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds"
return
else:
raise error
processing_jobs[job_id]['progress'] = 80
# Export and optimize
glb_path = os.path.join(output_dir, "model.glb")
mesh.export(glb_path, file_type='glb')
# Optimize for Unity
optimized_path = optimize_mesh(glb_path)
processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
processing_jobs[job_id]['status'] = 'completed'
processing_jobs[job_id]['progress'] = 100
print(f"Job {job_id} completed successfully")
except Exception as e:
error_details = traceback.format_exc()
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
print(f"Error processing job {job_id}: {str(e)}")
print(error_details)
return
if os.path.exists(filepath):
os.remove(filepath)
gc.collect()
except Exception as e:
error_details = traceback.format_exc()
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"{str(e)}\n{error_details}"
print(f"Error processing job {job_id}: {str(e)}")
print(error_details)
if os.path.exists(filepath):
os.remove(filepath)
processing_thread = threading.Thread(target=process_image)
processing_thread.daemon = True
processing_thread.start()
return jsonify({"job_id": job_id}), 202
@app.route('/download/<job_id>', methods=['GET'])
def download_model(job_id):
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
return jsonify({"error": "Model not found or processing not complete"}), 404
output_dir = os.path.join(RESULTS_FOLDER, job_id)
glb_path = os.path.join(output_dir, "model_optimized.glb")
if os.path.exists(glb_path):
return send_file(glb_path, as_attachment=True, download_name="model.glb")
return jsonify({"error": "File not found"}), 404
@app.route('/preview/<job_id>', methods=['GET'])
def preview_model(job_id):
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
return jsonify({"error": "Model not found or processing not complete"}), 404
output_dir = os.path.join(RESULTS_FOLDER, job_id)
glb_path = os.path.join(output_dir, "model_optimized.glb")
if os.path.exists(glb_path):
return send_file(glb_path, mimetype='model/gltf-binary')
return jsonify({"error": "Model file not found"}), 404
def cleanup_old_jobs():
current_time = time.time()
job_ids_to_remove = []
for job_id, job_data in processing_jobs.items():
if job_data['status'] == 'completed' and (current_time - job_data.get('created_at', 0)) > 3600:
job_ids_to_remove.append(job_id)
elif job_data['status'] == 'error' and (current_time - job_data.get('created_at', 0)) > 1800:
job_ids_to_remove.append(job_id)
for job_id in job_ids_to_remove:
output_dir = os.path.join(RESULTS_FOLDER, job_id)
try:
import shutil
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
except Exception as e:
print(f"Error cleaning up job {job_id}: {str(e)}")
if job_id in processing_jobs:
del processing_jobs[job_id]
threading.Timer(300, cleanup_old_jobs).start()
@app.route('/model-info/<job_id>', methods=['GET'])
def model_info(job_id):
if job_id not in processing_jobs:
return jsonify({"error": "Model not found"}), 404
job = processing_jobs[job_id]
if job['status'] != 'completed':
return jsonify({
"status": job['status'],
"progress": job['progress'],
"error": job.get('error')
}), 200
output_dir = os.path.join(RESULTS_FOLDER, job_id)
model_stats = {}
glb_path = os.path.join(output_dir, "model_optimized.glb")
if os.path.exists(glb_path):
model_stats['model_size'] = os.path.getsize(glb_path)
return jsonify({
"status": job['status'],
"model_format": job['output_format'],
"download_url": job['result_url'],
"preview_url": job['preview_url'],
"model_stats": model_stats,
"created_at": job.get('created_at'),
"completed_at": job.get('completed_at')
}), 200
@app.route('/', methods=['GET'])
def index():
return jsonify({
"message": "Image to 3D API (Hunyuan3D-2mini)",
"endpoints": [
"/convert",
"/progress/<job_id>",
"/download/<job_id>",
"/preview/<job_id>",
"/model-info/<job_id>"
],
"parameters": {
"output_format": "glb",
"detail_level": "low, medium, or high - controls mesh detail"
},
"description": "This API creates full 3D models from 2D images using Hunyuan3D-2mini"
}), 200
if __name__ == '__main__':
cleanup_old_jobs()
port = int(os.environ.get('PORT', 7860))
app.run(host='0.0.0.0', port=port) |