File size: 15,722 Bytes
c105678
 
3a58e1b
 
 
cd1cc5d
3a58e1b
c105678
 
 
 
e5edf92
 
8dac441
cd1cc5d
bf928c6
 
fa62b8d
13afc6c
 
c105678
18afcf1
 
 
 
c105678
13afc6c
c105678
fa62b8d
e5edf92
 
 
c105678
 
13afc6c
c105678
 
e5edf92
 
13afc6c
e5edf92
 
fa62b8d
c105678
 
fa62b8d
c105678
13afc6c
fa62b8d
 
 
13afc6c
cd1cc5d
 
e5edf92
13afc6c
 
 
cd1cc5d
13afc6c
cd1cc5d
 
 
13afc6c
fa62b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c105678
 
 
13afc6c
fa62b8d
 
c0d1170
fa62b8d
13afc6c
fa62b8d
 
 
 
 
 
 
 
 
 
cd1cc5d
fa62b8d
13afc6c
fa62b8d
8dac441
13afc6c
fa62b8d
 
 
 
13afc6c
fa62b8d
cd1cc5d
fa62b8d
13afc6c
fa62b8d
13afc6c
 
 
fa62b8d
 
 
 
 
 
 
 
 
 
 
 
13afc6c
fa62b8d
 
 
 
 
13afc6c
 
fa24ab7
13afc6c
 
 
18afcf1
 
138cb5e
fa62b8d
8dac441
13afc6c
 
fa62b8d
f515ccd
fa62b8d
 
8dac441
fa62b8d
 
 
13afc6c
 
 
 
 
 
 
 
fa62b8d
 
 
 
cfa68ff
13afc6c
cfa68ff
fa62b8d
 
 
 
 
 
 
 
 
 
13afc6c
fa62b8d
 
 
 
 
 
 
 
13afc6c
fa62b8d
 
13afc6c
cfa68ff
fa62b8d
 
 
 
 
 
 
 
 
 
 
 
afec0dd
c105678
 
 
 
 
 
fa62b8d
 
 
c105678
13afc6c
fa62b8d
 
cfa68ff
 
fa62b8d
 
 
13afc6c
 
fa62b8d
3a58e1b
 
 
fa62b8d
3a58e1b
cd1cc5d
3a58e1b
fa62b8d
3a58e1b
 
 
 
fa62b8d
 
 
 
3a58e1b
fa62b8d
3a58e1b
fa62b8d
 
 
3a58e1b
fa62b8d
 
 
 
 
fa24ab7
13afc6c
fa62b8d
 
 
 
 
 
cfa68ff
13afc6c
 
 
 
 
 
 
 
 
 
 
 
cfa68ff
8dac441
cfa68ff
fa62b8d
 
 
 
 
 
 
 
13afc6c
fa62b8d
 
13afc6c
 
 
 
 
 
cfa68ff
13afc6c
 
fa62b8d
 
 
 
cfa68ff
fa62b8d
 
 
13afc6c
 
fa62b8d
13afc6c
fa62b8d
 
 
 
 
 
 
 
 
 
 
 
13afc6c
fa62b8d
 
 
 
 
 
 
cfa68ff
1c91a49
fa62b8d
 
 
 
 
 
13afc6c
fa62b8d
13afc6c
 
fa62b8d
 
c105678
fa62b8d
 
 
 
 
 
13afc6c
 
 
 
fa62b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13afc6c
fa62b8d
 
 
cfa68ff
fa62b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13afc6c
 
 
fa62b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
13afc6c
fa62b8d
cfa68ff
 
 
fa62b8d
 
 
 
13afc6c
 
fa62b8d
13afc6c
fa62b8d
 
8dac441
fa62b8d
 
18afcf1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import os
import torch
import time
import threading
import json
import gc
from flask import Flask, request, jsonify, send_file, Response, stream_with_context
from werkzeug.utils import secure_filename
from PIL import Image
import io
import zipfile
import uuid
import traceback
from huggingface_hub import snapshot_download
from flask_cors import CORS
import numpy as np
import trimesh
import cv2
import pymeshlab
from hy3dgen.shapegen import Hunyuan3DDiTFlowMatchingPipeline

# Force CPU usage
os.environ["CUDA_VISIBLE_DEVICES"] = ""  # Disable GPU detection
torch.set_default_device("cpu")  # Set CPU as default device

app = Flask(__name__)
CORS(app)  # Enable CORS for all routes

# Configure directories
UPLOAD_FOLDER = '/tmp/uploads'
RESULTS_FOLDER = '/tmp/results'
CACHE_DIR = '/tmp/huggingface'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}

# Create necessary directories
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULTS_FOLDER, exist_ok=True)
os.makedirs(CACHE_DIR, exist_ok=True)

# Set Hugging Face cache environment variables
os.environ['HF_HOME'] = CACHE_DIR
os.environ['TRANSFORMERS_CACHE'] = os.path.join(CACHE_DIR, 'transformers')
os.environ['HF_DATASETS_CACHE'] = os.path.join(CACHE_DIR, 'datasets')

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024  # 16MB max

# Job tracking dictionary
processing_jobs = {}

# Global model variables
hunyuan_pipeline = None
model_loaded = False
model_loading = False

# Configuration for processing
TIMEOUT_SECONDS = 600  # 10 minutes max for Hunyuan3D-2mini on CPU
MAX_DIMENSION = 256    # Reduced for CPU memory constraints

# TimeoutError for handling timeouts
class TimeoutError(Exception):
    pass

# Thread-safe timeout implementation
def process_with_timeout(function, args, timeout):
    result = [None]
    error = [None]
    completed = [False]
    
    def target():
        try:
            result[0] = function(*args)
            completed[0] = True
        except Exception as e:
            error[0] = e
    
    thread = threading.Thread(target=target)
    thread.daemon = True
    thread.start()
    
    thread.join(timeout)
    
    if not completed[0]:
        if thread.is_alive():
            return None, TimeoutError(f"Processing timed out after {timeout} seconds")
        elif error[0]:
            return None, error[0]
    
    if error[0]:
        return None, error[0]
    
    return result[0], None

def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

# Simplified image preprocessing for Hunyuan3D-2mini
def preprocess_image(image_path):
    with Image.open(image_path) as img:
        img = img.convert("RGB")
        
        # Resize to smaller dimensions for CPU
        if img.width > MAX_DIMENSION or img.height > MAX_DIMENSION:
            if img.width > img.height:
                new_width = MAX_DIMENSION
                new_height = int(img.height * (MAX_DIMENSION / img.width))
            else:
                new_height = MAX_DIMENSION
                new_width = int(img.width * (MAX_DIMENSION / img.height))
            img = img.resize((new_width, new_height), Image.LANCZOS)
        
        return img

def load_model():
    global hunyuan_pipeline, model_loaded, model_loading
    
    if model_loaded:
        return hunyuan_pipeline
    
    if model_loading:
        while model_loading and not model_loaded:
            time.sleep(0.5)
        return hunyuan_pipeline
    
    try:
        model_loading = True
        print("Starting model loading...")
        
        model_name = "tencent/Hunyuan3D-2mini"
        
        # Download model with retry mechanism
        max_retries = 3
        retry_delay = 5
        for attempt in range(max_retries):
            try:
                snapshot_download(
                    repo_id=model_name,
                    cache_dir=CACHE_DIR,
                    resume_download=True,
                )
                break
            except Exception as e:
                if attempt < max_retries - 1:
                    print(f"Download attempt {attempt+1} failed: {str(e)}. Retrying in {retry_delay} seconds...")
                    time.sleep(retry_delay)
                    retry_delay *= 2
                else:
                    raise
        
        # Load Hunyuan3D-2mini pipeline
        hunyuan_pipeline = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained(
            model_name,
            subfolder="hunyuan3d-dit-v2-mini",
            use_safetensors=True,
            torch_dtype=torch.float16,
            cache_dir=CACHE_DIR,
            device_map="cpu"  # Explicitly set to CPU
        )
        
        model_loaded = True
        print("Model loaded successfully on CPU")
        return hunyuan_pipeline
    
    except Exception as e:
        print(f"Error loading model: {str(e)}")
        print(traceback.format_exc())
        raise
    finally:
        model_loading = False

# Optimize mesh for Unity
def optimize_mesh(mesh_path, target_faces=10000):
    ms = pymeshlab.MeshSet()
    ms.load_new_mesh(mesh_path)
    ms.meshing_decimation_quadric_edge_collapse(targetfacenum=target_faces)
    optimized_path = mesh_path.replace(".glb", "_optimized.glb")
    ms.save_current_mesh(optimized_path)
    return optimized_path

@app.route('/health', methods=['GET'])
def health_check():
    return jsonify({
        "status": "healthy",
        "model": "Hunyuan3D-2mini 3D Generator",
        "device": "cpu"
    }), 200

@app.route('/progress/<job_id>', methods=['GET'])
def progress(job_id):
    def generate():
        if job_id not in processing_jobs:
            yield f"data: {json.dumps({'error': 'Job not found'})}\n\n"
            return
            
        job = processing_jobs[job_id]
        
        yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
        
        last_progress = job['progress']
        check_count = 0
        while job['status'] == 'processing':
            if job['progress'] != last_progress:
                yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
                last_progress = job['progress']
            
            time.sleep(0.5)
            check_count += 1
            
            if check_count > 60:
                if 'thread_alive' in job and not job['thread_alive']():
                    job['status'] = 'error'
                    job['error'] = 'Processing thread died unexpectedly'
                    break
                check_count = 0
        
        if job['status'] == 'completed':
            yield f"data: {json.dumps({'status': 'completed', 'progress': 100, 'result_url': job['result_url'], 'preview_url': job['preview_url']})}\n\n"
        else:
            yield f"data: {json.dumps({'status': 'error', 'error': job['error']})}\n\n"
    
    return Response(stream_with_context(generate()), mimetype='text/event-stream')

@app.route('/convert', methods=['POST'])
def convert_image_to_3d():
    if 'image' not in request.files:
        return jsonify({"error": "No image provided"}), 400
    
    file = request.files['image']
    if file.filename == '':
        return jsonify({"error": "No image selected"}), 400
    
    if not allowed_file(file.filename):
        return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
    
    try:
        output_format = request.form.get('output_format', 'glb').lower()
        detail_level = request.form.get('detail_level', 'medium').lower()
    except ValueError:
        return jsonify({"error": "Invalid parameter values"}), 400
    
    if output_format not in ['glb']:
        return jsonify({"error": "Only GLB format is supported with Hunyuan3D-2mini"}), 400
    
    job_id = str(uuid.uuid4())
    output_dir = os.path.join(RESULTS_FOLDER, job_id)
    os.makedirs(output_dir, exist_ok=True)
    
    filename = secure_filename(file.filename)
    filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}")
    file.save(filepath)
    
    processing_jobs[job_id] = {
        'status': 'processing',
        'progress': 0,
        'result_url': None,
        'preview_url': None,
        'error': None,
        'output_format': output_format,
        'created_at': time.time()
    }
    
    def process_image():
        thread = threading.current_thread()
        processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
        
        try:
            processing_jobs[job_id]['progress'] = 5
            image = preprocess_image(filepath)
            processing_jobs[job_id]['progress'] = 10
            
            try:
                model = load_model()
                processing_jobs[job_id]['progress'] = 30
            except Exception as e:
                processing_jobs[job_id]['status'] = 'error'
                processing_jobs[job_id]['error'] = f"Error loading model: {str(e)}"
                return
            
            try:
                def generate_3d():
                    # Adjust settings based on detail level
                    steps = {'low': 20, 'medium': 30, 'high': 40}
                    resolution = {'low': 200, 'medium': 256, 'high': 300}
                    
                    mesh = model(
                        image=image,
                        num_inference_steps=steps[detail_level],
                        octree_resolution=resolution[detail_level],
                        num_chunks=10000,
                        generator=torch.manual_seed(12345),
                        output_type="trimesh"
                    )[0]
                    return mesh
                
                mesh, error = process_with_timeout(generate_3d, [], TIMEOUT_SECONDS)
                
                if error:
                    if isinstance(error, TimeoutError):
                        processing_jobs[job_id]['status'] = 'error'
                        processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds"
                        return
                    else:
                        raise error
                        
                processing_jobs[job_id]['progress'] = 80
                
                # Export and optimize
                glb_path = os.path.join(output_dir, "model.glb")
                mesh.export(glb_path, file_type='glb')
                
                # Optimize for Unity
                optimized_path = optimize_mesh(glb_path)
                
                processing_jobs[job_id]['result_url'] = f"/download/{job_id}"
                processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
                
                processing_jobs[job_id]['status'] = 'completed'
                processing_jobs[job_id]['progress'] = 100
                print(f"Job {job_id} completed successfully")
                
            except Exception as e:
                error_details = traceback.format_exc()
                processing_jobs[job_id]['status'] = 'error'
                processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
                print(f"Error processing job {job_id}: {str(e)}")
                print(error_details)
                return
            
            if os.path.exists(filepath):
                os.remove(filepath)
            
            gc.collect()
            
        except Exception as e:
            error_details = traceback.format_exc()
            processing_jobs[job_id]['status'] = 'error'
            processing_jobs[job_id]['error'] = f"{str(e)}\n{error_details}"
            print(f"Error processing job {job_id}: {str(e)}")
            print(error_details)
            
            if os.path.exists(filepath):
                os.remove(filepath)
    
    processing_thread = threading.Thread(target=process_image)
    processing_thread.daemon = True
    processing_thread.start()
    
    return jsonify({"job_id": job_id}), 202

@app.route('/download/<job_id>', methods=['GET'])
def download_model(job_id):
    if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
        return jsonify({"error": "Model not found or processing not complete"}), 404
    
    output_dir = os.path.join(RESULTS_FOLDER, job_id)
    glb_path = os.path.join(output_dir, "model_optimized.glb")
    
    if os.path.exists(glb_path):
        return send_file(glb_path, as_attachment=True, download_name="model.glb")
    
    return jsonify({"error": "File not found"}), 404

@app.route('/preview/<job_id>', methods=['GET'])
def preview_model(job_id):
    if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
        return jsonify({"error": "Model not found or processing not complete"}), 404
    
    output_dir = os.path.join(RESULTS_FOLDER, job_id)
    glb_path = os.path.join(output_dir, "model_optimized.glb")
    
    if os.path.exists(glb_path):
        return send_file(glb_path, mimetype='model/gltf-binary')
    
    return jsonify({"error": "Model file not found"}), 404

def cleanup_old_jobs():
    current_time = time.time()
    job_ids_to_remove = []
    
    for job_id, job_data in processing_jobs.items():
        if job_data['status'] == 'completed' and (current_time - job_data.get('created_at', 0)) > 3600:
            job_ids_to_remove.append(job_id)
        elif job_data['status'] == 'error' and (current_time - job_data.get('created_at', 0)) > 1800:
            job_ids_to_remove.append(job_id)
    
    for job_id in job_ids_to_remove:
        output_dir = os.path.join(RESULTS_FOLDER, job_id)
        try:
            import shutil
            if os.path.exists(output_dir):
                shutil.rmtree(output_dir)
        except Exception as e:
            print(f"Error cleaning up job {job_id}: {str(e)}")
        
        if job_id in processing_jobs:
            del processing_jobs[job_id]
    
    threading.Timer(300, cleanup_old_jobs).start()

@app.route('/model-info/<job_id>', methods=['GET'])
def model_info(job_id):
    if job_id not in processing_jobs:
        return jsonify({"error": "Model not found"}), 404
        
    job = processing_jobs[job_id]
    
    if job['status'] != 'completed':
        return jsonify({
            "status": job['status'],
            "progress": job['progress'],
            "error": job.get('error')
        }), 200
    
    output_dir = os.path.join(RESULTS_FOLDER, job_id)
    model_stats = {}
    
    glb_path = os.path.join(output_dir, "model_optimized.glb")
    if os.path.exists(glb_path):
        model_stats['model_size'] = os.path.getsize(glb_path)
    
    return jsonify({
        "status": job['status'],
        "model_format": job['output_format'],
        "download_url": job['result_url'],
        "preview_url": job['preview_url'],
        "model_stats": model_stats,
        "created_at": job.get('created_at'),
        "completed_at": job.get('completed_at')
    }), 200

@app.route('/', methods=['GET'])
def index():
    return jsonify({
        "message": "Image to 3D API (Hunyuan3D-2mini)",
        "endpoints": [
            "/convert",
            "/progress/<job_id>",
            "/download/<job_id>",
            "/preview/<job_id>",
            "/model-info/<job_id>"
        ],
        "parameters": {
            "output_format": "glb",
            "detail_level": "low, medium, or high - controls mesh detail"
        },
        "description": "This API creates full 3D models from 2D images using Hunyuan3D-2mini"
    }), 200

if __name__ == '__main__':
    cleanup_old_jobs()
    port = int(os.environ.get('PORT', 7860))
    app.run(host='0.0.0.0', port=port)