File size: 8,688 Bytes
b27c7f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
import os
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings 
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
import torch

api_token = os.getenv("HF_TOKEN")

list_llm = ["microsoft/Phi-3-mini-4k-instruct", "mistralai/Mistral-7B-Instruct-v0.3"]  
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

# Load and split PDF document
def load_doc(list_file_path, chunk_size, chunk_overlap):
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size, 
        chunk_overlap=chunk_overlap 
    )  
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

# Create vector database
def create_db(splits):
    embeddings = HuggingFaceEmbeddings()
    vectordb = FAISS.from_documents(splits, embeddings)
    return vectordb

# Initialize langchain LLM chain
def initialize_llmchain(llm_model, vector_db, progress=gr.Progress()):
    llm = HuggingFaceEndpoint(
        huggingfacehub_api_token=api_token,
        repo_id=llm_model, 
        temperature=0.1,
        max_new_tokens=2000,
        top_k=3,
    )
    
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )

    retriever = vector_db.as_retriever()
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff", 
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    return qa_chain

# Initialize database
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
    list_file_path = [x.name for x in list_file_obj if x is not None]
    doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
    vector_db = create_db(doc_splits)
    if vector_db is None:
        print("Vector database creation failed")
    else:
        print("Embedding database created successfully")
    return vector_db, "Embedding database created!"

# Initialize LLM
def initialize_LLM(llm_option, vector_db, progress=gr.Progress()):
    if vector_db is None:
        print("Vector database is None")
        return None, "Failed to initialize RAG System: Vector database is None"
    
    llm_name = list_llm[llm_option]
    qa_chain = initialize_llmchain(llm_name, vector_db, progress)
    return qa_chain, "RAG System initialized!"

def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history

def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
    response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    new_history = history + [(message, response_answer)]
    return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page

def upload_file(file_obj):
    list_file_path = []
    for idx, file in enumerate(file_obj):
        file_path = file_obj.name
        list_file_path.append(file_path)
    return list_file_path

def demo():
    with gr.Blocks(theme=gr.themes.Default(primary_hue="green")) as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        gr.HTML("<center><h1>RAG System</h1><center>")
        gr.Markdown("""This App is designed to perform retrieval augmented generation (RAG) on PDF documents. \
        <b>Please do not upload confidential documents.</b>
        """)
        with gr.Row():
            with gr.Column(scale=86):
                gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize the RAG system</b>")
                with gr.Row():
                    document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
                with gr.Row():
                    slider_chunk_size = gr.Slider(minimum=10, maximum=1000, value=200, step=5, label="Chunk Size")
                    slider_chunk_overlap = gr.Slider(minimum=0, maximum=512, value=20, step=5, label="Chunk Overlap")
                with gr.Row():
                    db_btn = gr.Button("Create Embeddings")
                with gr.Row():
                    db_progress = gr.Textbox(value="Not initialized", show_label=False)
                gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM)</b>")
                with gr.Row():
                    llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
                with gr.Row():
                    qachain_btn = gr.Button("Initialize RAG system")
                with gr.Row():
                    llm_progress = gr.Textbox(value="Not initialized", show_label=False)

            with gr.Column(scale=200):
                gr.Markdown("<b>Step 2 - Chat with your Document</b>")
                chatbot = gr.Chatbot(height=505)
                with gr.Accordion("Similar context from the source document", open=False):
                    with gr.Row():
                        doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
                        source1_page = gr.Number(label="Page", scale=1)
                    with gr.Row():
                        doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
                        source2_page = gr.Number(label="Page", scale=1)
                    with gr.Row():
                        doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
                        source3_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    msg = gr.Textbox(placeholder="Ask a question", container=True)
                with gr.Row():
                    submit_btn = gr.Button("Submit")
                    clear_btn = gr.ClearButton([msg, chatbot], value="Clear")

        # Preprocessing events
        db_btn.click(initialize_database, 
            inputs=[document, slider_chunk_size, slider_chunk_overlap], 
            outputs=[vector_db, db_progress])
        qachain_btn.click(initialize_LLM, 
            inputs=[llm_btn, vector_db], 
            outputs=[qa_chain, llm_progress]).then(lambda:[None, "", 0, "", 0, "", 0], 
            inputs=None, 
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)

        # Chatbot events
        msg.submit(conversation, 
            inputs=[qa_chain, msg, chatbot], 
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)
        submit_btn.click(conversation, 
            inputs=[qa_chain, msg, chatbot], 
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)
        clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], 
            inputs=None, 
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], 
            queue=False)
    demo.queue().launch(debug=True)

if __name__ == "__main__":
    demo()