llmat commited on
Commit
b27c7f2
·
verified ·
1 Parent(s): 1b240ae

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +191 -0
  2. requirements.txt +9 -0
app.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ from langchain_community.vectorstores import FAISS
4
+ from langchain_community.document_loaders import PyPDFLoader
5
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
6
+ from langchain_community.vectorstores import Chroma
7
+ from langchain.chains import ConversationalRetrievalChain
8
+ from langchain_community.embeddings import HuggingFaceEmbeddings
9
+ from langchain_community.llms import HuggingFacePipeline
10
+ from langchain.chains import ConversationChain
11
+ from langchain.memory import ConversationBufferMemory
12
+ from langchain_community.llms import HuggingFaceEndpoint
13
+ import torch
14
+
15
+ api_token = os.getenv("HF_TOKEN")
16
+
17
+ list_llm = ["microsoft/Phi-3-mini-4k-instruct", "mistralai/Mistral-7B-Instruct-v0.3"]
18
+ list_llm_simple = [os.path.basename(llm) for llm in list_llm]
19
+
20
+ # Load and split PDF document
21
+ def load_doc(list_file_path, chunk_size, chunk_overlap):
22
+ loaders = [PyPDFLoader(x) for x in list_file_path]
23
+ pages = []
24
+ for loader in loaders:
25
+ pages.extend(loader.load())
26
+ text_splitter = RecursiveCharacterTextSplitter(
27
+ chunk_size=chunk_size,
28
+ chunk_overlap=chunk_overlap
29
+ )
30
+ doc_splits = text_splitter.split_documents(pages)
31
+ return doc_splits
32
+
33
+ # Create vector database
34
+ def create_db(splits):
35
+ embeddings = HuggingFaceEmbeddings()
36
+ vectordb = FAISS.from_documents(splits, embeddings)
37
+ return vectordb
38
+
39
+ # Initialize langchain LLM chain
40
+ def initialize_llmchain(llm_model, vector_db, progress=gr.Progress()):
41
+ llm = HuggingFaceEndpoint(
42
+ huggingfacehub_api_token=api_token,
43
+ repo_id=llm_model,
44
+ temperature=0.1,
45
+ max_new_tokens=2000,
46
+ top_k=3,
47
+ )
48
+
49
+ memory = ConversationBufferMemory(
50
+ memory_key="chat_history",
51
+ output_key='answer',
52
+ return_messages=True
53
+ )
54
+
55
+ retriever = vector_db.as_retriever()
56
+ qa_chain = ConversationalRetrievalChain.from_llm(
57
+ llm,
58
+ retriever=retriever,
59
+ chain_type="stuff",
60
+ memory=memory,
61
+ return_source_documents=True,
62
+ verbose=False,
63
+ )
64
+ return qa_chain
65
+
66
+ # Initialize database
67
+ def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
68
+ list_file_path = [x.name for x in list_file_obj if x is not None]
69
+ doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
70
+ vector_db = create_db(doc_splits)
71
+ if vector_db is None:
72
+ print("Vector database creation failed")
73
+ else:
74
+ print("Embedding database created successfully")
75
+ return vector_db, "Embedding database created!"
76
+
77
+ # Initialize LLM
78
+ def initialize_LLM(llm_option, vector_db, progress=gr.Progress()):
79
+ if vector_db is None:
80
+ print("Vector database is None")
81
+ return None, "Failed to initialize RAG System: Vector database is None"
82
+
83
+ llm_name = list_llm[llm_option]
84
+ qa_chain = initialize_llmchain(llm_name, vector_db, progress)
85
+ return qa_chain, "RAG System initialized!"
86
+
87
+ def format_chat_history(message, chat_history):
88
+ formatted_chat_history = []
89
+ for user_message, bot_message in chat_history:
90
+ formatted_chat_history.append(f"User: {user_message}")
91
+ formatted_chat_history.append(f"Assistant: {bot_message}")
92
+ return formatted_chat_history
93
+
94
+ def conversation(qa_chain, message, history):
95
+ formatted_chat_history = format_chat_history(message, history)
96
+ response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
97
+ response_answer = response["answer"]
98
+ if response_answer.find("Helpful Answer:") != -1:
99
+ response_answer = response_answer.split("Helpful Answer:")[-1]
100
+ response_sources = response["source_documents"]
101
+ response_source1 = response_sources[0].page_content.strip()
102
+ response_source2 = response_sources[1].page_content.strip()
103
+ response_source3 = response_sources[2].page_content.strip()
104
+ response_source1_page = response_sources[0].metadata["page"] + 1
105
+ response_source2_page = response_sources[1].metadata["page"] + 1
106
+ response_source3_page = response_sources[2].metadata["page"] + 1
107
+ new_history = history + [(message, response_answer)]
108
+ return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
109
+
110
+ def upload_file(file_obj):
111
+ list_file_path = []
112
+ for idx, file in enumerate(file_obj):
113
+ file_path = file_obj.name
114
+ list_file_path.append(file_path)
115
+ return list_file_path
116
+
117
+ def demo():
118
+ with gr.Blocks(theme=gr.themes.Default(primary_hue="green")) as demo:
119
+ vector_db = gr.State()
120
+ qa_chain = gr.State()
121
+ gr.HTML("<center><h1>RAG System</h1><center>")
122
+ gr.Markdown("""This App is designed to perform retrieval augmented generation (RAG) on PDF documents. \
123
+ <b>Please do not upload confidential documents.</b>
124
+ """)
125
+ with gr.Row():
126
+ with gr.Column(scale=86):
127
+ gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize the RAG system</b>")
128
+ with gr.Row():
129
+ document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
130
+ with gr.Row():
131
+ slider_chunk_size = gr.Slider(minimum=10, maximum=1000, value=200, step=5, label="Chunk Size")
132
+ slider_chunk_overlap = gr.Slider(minimum=0, maximum=512, value=20, step=5, label="Chunk Overlap")
133
+ with gr.Row():
134
+ db_btn = gr.Button("Create Embeddings")
135
+ with gr.Row():
136
+ db_progress = gr.Textbox(value="Not initialized", show_label=False)
137
+ gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM)</b>")
138
+ with gr.Row():
139
+ llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
140
+ with gr.Row():
141
+ qachain_btn = gr.Button("Initialize RAG system")
142
+ with gr.Row():
143
+ llm_progress = gr.Textbox(value="Not initialized", show_label=False)
144
+
145
+ with gr.Column(scale=200):
146
+ gr.Markdown("<b>Step 2 - Chat with your Document</b>")
147
+ chatbot = gr.Chatbot(height=505)
148
+ with gr.Accordion("Similar context from the source document", open=False):
149
+ with gr.Row():
150
+ doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
151
+ source1_page = gr.Number(label="Page", scale=1)
152
+ with gr.Row():
153
+ doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
154
+ source2_page = gr.Number(label="Page", scale=1)
155
+ with gr.Row():
156
+ doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
157
+ source3_page = gr.Number(label="Page", scale=1)
158
+ with gr.Row():
159
+ msg = gr.Textbox(placeholder="Ask a question", container=True)
160
+ with gr.Row():
161
+ submit_btn = gr.Button("Submit")
162
+ clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
163
+
164
+ # Preprocessing events
165
+ db_btn.click(initialize_database,
166
+ inputs=[document, slider_chunk_size, slider_chunk_overlap],
167
+ outputs=[vector_db, db_progress])
168
+ qachain_btn.click(initialize_LLM,
169
+ inputs=[llm_btn, vector_db],
170
+ outputs=[qa_chain, llm_progress]).then(lambda:[None, "", 0, "", 0, "", 0],
171
+ inputs=None,
172
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
173
+ queue=False)
174
+
175
+ # Chatbot events
176
+ msg.submit(conversation,
177
+ inputs=[qa_chain, msg, chatbot],
178
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
179
+ queue=False)
180
+ submit_btn.click(conversation,
181
+ inputs=[qa_chain, msg, chatbot],
182
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
183
+ queue=False)
184
+ clear_btn.click(lambda: [None, "", 0, "", 0, "", 0],
185
+ inputs=None,
186
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
187
+ queue=False)
188
+ demo.queue().launch(debug=True)
189
+
190
+ if __name__ == "__main__":
191
+ demo()
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ sentence-transformers
4
+ langchain
5
+ langchain-community
6
+ tqdm
7
+ accelerate
8
+ pypdf
9
+ faiss-gpu