CantusSVS-hf / utils /training_utils.py
liampond
Clean deploy snapshot
c42fe7e
import math
import re
from copy import deepcopy
from pathlib import Path
from typing import Dict
import lightning.pytorch as pl
import numpy as np
import torch
from lightning.fabric.loggers.tensorboard import _TENSORBOARD_AVAILABLE
from lightning.pytorch.callbacks import ModelCheckpoint, TQDMProgressBar
from lightning.pytorch.loggers import TensorBoardLogger
from lightning.pytorch.utilities.rank_zero import rank_zero_info, rank_zero_only
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data.distributed import Sampler
import utils
from utils.hparams import hparams
# ==========LR schedulers==========
class RSQRTSchedule(object):
def __init__(self, optimizer):
super().__init__()
self.optimizer = optimizer
self.constant_lr = hparams['lr']
self.warmup_updates = hparams['warmup_updates']
self.hidden_size = hparams['hidden_size']
self.lr = hparams['lr']
for param_group in optimizer.param_groups:
param_group['lr'] = self.lr
self.step(0)
def step(self, num_updates):
constant_lr = self.constant_lr
warmup = min(num_updates / self.warmup_updates, 1.0)
rsqrt_decay = max(self.warmup_updates, num_updates) ** -0.5
rsqrt_hidden = self.hidden_size ** -0.5
self.lr = max(constant_lr * warmup * rsqrt_decay * rsqrt_hidden, 1e-7)
for param_group in self.optimizer.param_groups:
param_group['lr'] = self.lr
return self.lr
def get_lr(self):
return self.optimizer.param_groups[0]['lr']
class WarmupCosineSchedule(LambdaLR):
""" Linear warmup and then cosine decay.
Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
Decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps following a cosine curve.
If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup.
`eta_min` (default=0.0) corresponds to the minimum learning rate reached by the scheduler.
"""
def __init__(self, optimizer, warmup_steps, t_total, eta_min=0.0, cycles=.5, last_epoch=-1):
self.warmup_steps = warmup_steps
self.t_total = t_total
self.eta_min = eta_min
self.cycles = cycles
super(WarmupCosineSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(self, step):
if step < self.warmup_steps:
return step / max(1.0, self.warmup_steps)
# progress after warmup
progress = (step - self.warmup_steps) / max(1, self.t_total - self.warmup_steps)
return max(self.eta_min, 0.5 * (1. + math.cos(math.pi * self.cycles * 2.0 * progress)))
# ==========Torch samplers==========
class DsBatchSampler(Sampler):
def __init__(self, dataset, max_batch_frames, max_batch_size, sub_indices=None,
num_replicas=None, rank=None,
required_batch_count_multiple=1, batch_by_size=True, sort_by_similar_size=True,
size_reversed=False, shuffle_sample=False, shuffle_batch=False,
disallow_empty_batch=True, pad_batch_assignment=True, seed=0, drop_last=False) -> None:
if rank >= num_replicas or rank < 0:
raise ValueError(
f"Invalid rank {rank}, rank should be in the interval [0, {num_replicas - 1}]")
self.dataset = dataset
self.max_batch_frames = max_batch_frames
self.max_batch_size = max_batch_size
self.sub_indices = sub_indices
self.num_replicas = num_replicas
self.rank = rank
self.required_batch_count_multiple = required_batch_count_multiple
self.batch_by_size = batch_by_size
self.sort_by_similar_size = sort_by_similar_size
self.size_reversed = size_reversed
self.shuffle_sample = shuffle_sample
self.shuffle_batch = shuffle_batch
self.disallow_empty_batch = disallow_empty_batch
self.pad_batch_assignment = pad_batch_assignment
self.seed = seed
self.drop_last = drop_last
self.epoch = 0
self.batches = None
self.formed = None
def __form_batches(self):
if self.formed == self.epoch + self.seed:
return
rng = np.random.default_rng()
# Create indices
if self.shuffle_sample:
if self.sub_indices is not None:
rng.shuffle(self.sub_indices)
indices = np.array(self.sub_indices)
else:
indices = rng.permutation(len(self.dataset))
if self.sort_by_similar_size:
grid = int(hparams['sampler_frame_count_grid'])
assert grid > 0
sizes = (np.round(np.array(self.dataset.sizes)[indices] / grid) * grid).clip(grid, None)
sizes *= (-1 if self.size_reversed else 1)
indices = indices[np.argsort(sizes, kind='mergesort')]
indices = indices.tolist()
else:
indices = self.sub_indices if self.sub_indices is not None else list(range(len(self.dataset)))
# Batching
if self.batch_by_size:
batches = utils.batch_by_size(
indices, self.dataset.num_frames,
max_batch_frames=self.max_batch_frames,
max_batch_size=self.max_batch_size
)
else:
batches = [indices[i:i + self.max_batch_size] for i in range(0, len(indices), self.max_batch_size)]
if len(batches) < self.num_replicas and self.disallow_empty_batch:
raise RuntimeError("There is not enough batch to assign to each node.")
# Either drop_last or separate the leftovers.
floored_total_batch_count = (len(batches) // self.num_replicas) * self.num_replicas
if self.drop_last and len(batches) > floored_total_batch_count:
batches = batches[:floored_total_batch_count]
leftovers = []
if len(batches) == 0:
raise RuntimeError("There is no batch left after dropping the last batch.")
elif self.shuffle_batch:
leftovers = (rng.permutation(len(batches) - floored_total_batch_count) + floored_total_batch_count).tolist()
else:
leftovers = list(range(floored_total_batch_count, len(batches)))
# Initial batch assignment to current rank.
batch_assignment = np.arange(floored_total_batch_count).reshape(-1, self.num_replicas).transpose()
if self.shuffle_batch:
batch_assignment = rng.permuted(batch_assignment, axis=0)[self.rank].tolist()
else:
batch_assignment = batch_assignment[self.rank].tolist()
# Assign leftovers or pad the batch assignment.
floored_batch_count = len(batch_assignment)
if self.rank < len(leftovers):
batch_assignment.append(leftovers[self.rank])
floored_batch_count += 1
elif len(leftovers) > 0 and self.pad_batch_assignment:
if not batch_assignment:
raise RuntimeError("Cannot pad empty batch assignment.")
batch_assignment.append(batch_assignment[self.epoch % floored_batch_count])
# Ensure the batch count is multiple of required_batch_count_multiple.
if self.required_batch_count_multiple > 1 and len(batch_assignment) % self.required_batch_count_multiple != 0:
ceiled_batch_count = math.ceil(
len(batch_assignment) / self.required_batch_count_multiple
) * self.required_batch_count_multiple
for i in range(ceiled_batch_count - len(batch_assignment)):
batch_assignment.append(
batch_assignment[(i + self.epoch * self.required_batch_count_multiple) % floored_batch_count])
if batch_assignment:
self.batches = [deepcopy(batches[i]) for i in batch_assignment]
else:
self.batches = [[]]
self.formed = self.epoch + self.seed
del indices
del batches
del batch_assignment
def __iter__(self):
self.__form_batches()
return iter(self.batches)
def __len__(self):
self.__form_batches()
if self.batches is None:
raise RuntimeError("Batches are not initialized. Call __form_batches first.")
return len(self.batches)
def set_epoch(self, epoch):
self.epoch = epoch
self.__form_batches()
# ==========PL related==========
class DsModelCheckpoint(ModelCheckpoint):
def __init__(
self,
*args,
permanent_ckpt_start,
permanent_ckpt_interval,
**kwargs
):
super().__init__(*args, **kwargs)
self.permanent_ckpt_start = permanent_ckpt_start or 0
self.permanent_ckpt_interval = permanent_ckpt_interval or 0
self.enable_permanent_ckpt = self.permanent_ckpt_start > 0 and self.permanent_ckpt_interval > 9
self._verbose = self.verbose
self.verbose = False
def state_dict(self):
ret = super().state_dict()
ret.pop('dirpath')
return ret
def load_state_dict(self, state_dict) -> None:
super().load_state_dict(state_dict)
def on_validation_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
if trainer.lightning_module.skip_immediate_ckpt_save:
trainer.lightning_module.skip_immediate_ckpt_save = False
return
self.last_val_step = trainer.global_step
super().on_validation_end(trainer, pl_module)
def _update_best_and_save(
self, current: torch.Tensor, trainer: "pl.Trainer", monitor_candidates: Dict[str, torch.Tensor]
) -> None:
k = len(self.best_k_models) + 1 if self.save_top_k == -1 else self.save_top_k
del_filepath = None
_op = max if self.mode == "min" else min
while len(self.best_k_models) > k and k > 0:
self.kth_best_model_path = _op(self.best_k_models, key=self.best_k_models.get) # type: ignore[arg-type]
self.kth_value = self.best_k_models[self.kth_best_model_path]
del_filepath = self.kth_best_model_path
self.best_k_models.pop(del_filepath)
filepath = self._get_metric_interpolated_filepath_name(monitor_candidates, trainer, del_filepath)
if del_filepath is not None and filepath != del_filepath:
self._remove_checkpoint(trainer, del_filepath)
if len(self.best_k_models) == k and k > 0:
self.kth_best_model_path = _op(self.best_k_models, key=self.best_k_models.get) # type: ignore[arg-type]
self.kth_value = self.best_k_models[self.kth_best_model_path]
super()._update_best_and_save(current, trainer, monitor_candidates)
def _save_checkpoint(self, trainer: "pl.Trainer", filepath: str) -> None:
filepath = (Path(self.dirpath) / Path(filepath).name).resolve()
super()._save_checkpoint(trainer, str(filepath))
if self._verbose:
relative_path = filepath
# Avoid using `is_relative_to` because Python 3.8 does not support this
if Path('.').resolve() in filepath.parents:
relative_path = filepath.relative_to(Path('.').resolve())
rank_zero_info(f'Checkpoint {relative_path} saved.')
def _remove_checkpoint(self, trainer: "pl.Trainer", filepath: str):
filepath = (Path(self.dirpath) / Path(filepath).name).resolve()
relative_path = filepath
# Avoid using `is_relative_to` because Python 3.8 does not support this
if Path('.').resolve() in filepath.parents:
relative_path = filepath.relative_to(Path('.').resolve())
search = re.search(r'steps_\d+', relative_path.stem)
if search:
step = int(search.group(0)[6:])
if self.enable_permanent_ckpt and \
step >= self.permanent_ckpt_start and \
(step - self.permanent_ckpt_start) % self.permanent_ckpt_interval == 0:
rank_zero_info(f'Checkpoint {relative_path} is now permanent.')
return
super()._remove_checkpoint(trainer, filepath)
if self._verbose:
rank_zero_info(f'Removed checkpoint {relative_path}.')
def get_latest_checkpoint_path(work_dir):
if not isinstance(work_dir, Path):
work_dir = Path(work_dir)
if not work_dir.exists():
return None
last_step = -1
last_ckpt_name = None
for ckpt in work_dir.glob('model_ckpt_steps_*.ckpt'):
search = re.search(r'steps_\d+', ckpt.name)
if search:
step = int(search.group(0)[6:])
if step > last_step:
last_step = step
last_ckpt_name = str(ckpt)
return last_ckpt_name if last_ckpt_name is not None else None
class DsTQDMProgressBar(TQDMProgressBar):
def __init__(self, refresh_rate: int = 1, process_position: int = 0, show_steps: bool = True):
super().__init__(refresh_rate, process_position)
self.show_steps = show_steps
def get_metrics(self, trainer, model):
items = super().get_metrics(trainer, model)
if 'batch_size' in items:
items['batch_size'] = int(items['batch_size'])
if self.show_steps:
items['steps'] = str(trainer.global_step)
for k, v in items.items():
if isinstance(v, float):
if np.isnan(v):
items[k] = 'nan'
elif 0.001 <= v < 10:
items[k] = np.format_float_positional(v, unique=True, precision=5, trim='-')
elif 0.00001 <= v < 0.001:
if len(np.format_float_positional(v, unique=True, precision=8, trim='-')) > 8:
items[k] = np.format_float_scientific(v, precision=3, unique=True, min_digits=2, trim='-')
else:
items[k] = np.format_float_positional(v, unique=True, precision=5, trim='-')
elif v < 0.00001:
items[k] = np.format_float_scientific(v, precision=3, unique=True, min_digits=2, trim='-')
items.pop("v_num", None)
return items
class DsTensorBoardLogger(TensorBoardLogger):
@property
def all_rank_experiment(self):
if rank_zero_only.rank == 0:
return self.experiment
if hasattr(self, "_all_rank_experiment") and self._all_rank_experiment is not None:
return self._all_rank_experiment
assert rank_zero_only.rank != 0
if self.root_dir:
self._fs.makedirs(self.root_dir, exist_ok=True)
if _TENSORBOARD_AVAILABLE:
from torch.utils.tensorboard import SummaryWriter
else:
from tensorboardX import SummaryWriter # type: ignore[no-redef]
self._all_rank_experiment = SummaryWriter(log_dir=self.log_dir, **self._kwargs)
return self._all_rank_experiment
def finalize(self, status: str) -> None:
if rank_zero_only.rank == 0:
super().finalize(status)
elif hasattr(self, "_all_rank_experiment") and self._all_rank_experiment is not None:
self.all_rank_experiment.flush()
self.all_rank_experiment.close()
def __getstate__(self):
state = super().__getstate__()
if "_all_rank_experiment" in state:
del state["_all_rank_experiment"]
return state
def get_strategy(
devices="auto",
num_nodes=1,
accelerator="auto",
strategy={"name": "auto"},
precision=None,
):
from lightning.fabric.utilities.device_parser import _determine_root_gpu_device
from lightning.pytorch.accelerators import AcceleratorRegistry
from lightning.pytorch.accelerators.cuda import CUDAAccelerator
from lightning.pytorch.accelerators.mps import MPSAccelerator
from lightning.pytorch.strategies import Strategy, SingleDeviceStrategy, StrategyRegistry
from lightning.pytorch.trainer.connectors import accelerator_connector
from lightning.pytorch.utilities.rank_zero import rank_zero_warn
class _DsAcceleratorConnector(accelerator_connector._AcceleratorConnector):
def __init__(self) -> None:
accelerator_connector._register_external_accelerators_and_strategies()
self._registered_strategies = StrategyRegistry.available_strategies()
self._accelerator_types = AcceleratorRegistry.available_accelerators()
self._parallel_devices = []
self._check_config_and_set_final_flags(
strategy=strategy["name"],
accelerator=accelerator,
precision=precision,
plugins=[],
sync_batchnorm=False,
)
if self._accelerator_flag == "auto":
self._accelerator_flag = self._choose_auto_accelerator()
elif self._accelerator_flag == "gpu":
self._accelerator_flag = self._choose_gpu_accelerator_backend()
self._check_device_config_and_set_final_flags(devices=devices, num_nodes=num_nodes)
self._set_parallel_devices_and_init_accelerator()
if self._strategy_flag == "auto":
self._strategy_flag = self._choose_strategy()
self._check_strategy_and_fallback()
self._init_strategy()
for k in ["colossalai", "bagua", "hpu", "hpu_parallel", "hpu_single", "ipu", "ipu_strategy"]:
if k in StrategyRegistry:
StrategyRegistry.remove(k)
def _init_strategy(self) -> None:
assert isinstance(self._strategy_flag, (str, Strategy))
if isinstance(self._strategy_flag, str):
if self._strategy_flag not in StrategyRegistry:
available_names = ", ".join(sorted(StrategyRegistry.available_strategies())) or "none"
raise KeyError(f"Invalid strategy name {strategy['name']}. Available names: {available_names}")
data = StrategyRegistry[self._strategy_flag]
params = {}
# Replicate additional logic for _choose_strategy when dealing with single device strategies
if issubclass(data["strategy"], SingleDeviceStrategy):
if self._accelerator_flag == "hpu":
params = {"device": torch.device("hpu")}
elif self._accelerator_flag == "tpu":
params = {"device": self._parallel_devices[0]}
elif data["strategy"] is SingleDeviceStrategy:
if isinstance(self._accelerator_flag, (CUDAAccelerator, MPSAccelerator)) or (
isinstance(self._accelerator_flag, str) and self._accelerator_flag in ("cuda", "gpu", "mps")
):
params = {"device": _determine_root_gpu_device(self._parallel_devices)}
else:
params = {"device": "cpu"}
else:
raise NotImplementedError
params.update(data["init_params"])
params.update({k: v for k, v in strategy.items() if k != "name"})
self.strategy = data["strategy"](**utils.filter_kwargs(params, data["strategy"]))
elif isinstance(self._strategy_flag, SingleDeviceStrategy):
params = {"device": self._strategy_flag.root_device}
params.update({k: v for k, v in strategy.items() if k != "name"})
self.strategy = self._strategy_flag.__class__(**utils.filter_kwargs(params, self._strategy_flag.__class__))
else:
rank_zero_warn(
f"Inferred strategy {self._strategy_flag.__class__.__name__} cannot take custom configurations."
f"To use custom configurations, please specify the strategy name explicitly."
)
self.strategy = self._strategy_flag
return _DsAcceleratorConnector().strategy