File size: 20,135 Bytes
c42fe7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import math
import re
from copy import deepcopy
from pathlib import Path
from typing import Dict

import lightning.pytorch as pl
import numpy as np
import torch
from lightning.fabric.loggers.tensorboard import _TENSORBOARD_AVAILABLE
from lightning.pytorch.callbacks import ModelCheckpoint, TQDMProgressBar
from lightning.pytorch.loggers import TensorBoardLogger
from lightning.pytorch.utilities.rank_zero import rank_zero_info, rank_zero_only
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data.distributed import Sampler

import utils
from utils.hparams import hparams


# ==========LR schedulers==========

class RSQRTSchedule(object):
    def __init__(self, optimizer):
        super().__init__()
        self.optimizer = optimizer
        self.constant_lr = hparams['lr']
        self.warmup_updates = hparams['warmup_updates']
        self.hidden_size = hparams['hidden_size']
        self.lr = hparams['lr']
        for param_group in optimizer.param_groups:
            param_group['lr'] = self.lr
        self.step(0)

    def step(self, num_updates):
        constant_lr = self.constant_lr
        warmup = min(num_updates / self.warmup_updates, 1.0)
        rsqrt_decay = max(self.warmup_updates, num_updates) ** -0.5
        rsqrt_hidden = self.hidden_size ** -0.5
        self.lr = max(constant_lr * warmup * rsqrt_decay * rsqrt_hidden, 1e-7)
        for param_group in self.optimizer.param_groups:
            param_group['lr'] = self.lr
        return self.lr

    def get_lr(self):
        return self.optimizer.param_groups[0]['lr']


class WarmupCosineSchedule(LambdaLR):
    """ Linear warmup and then cosine decay.
        Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
        Decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps following a cosine curve.
        If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup.
        `eta_min` (default=0.0) corresponds to the minimum learning rate reached by the scheduler.
    """

    def __init__(self, optimizer, warmup_steps, t_total, eta_min=0.0, cycles=.5, last_epoch=-1):
        self.warmup_steps = warmup_steps
        self.t_total = t_total
        self.eta_min = eta_min
        self.cycles = cycles
        super(WarmupCosineSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)

    def lr_lambda(self, step):
        if step < self.warmup_steps:
            return step / max(1.0, self.warmup_steps)
        # progress after warmup
        progress = (step - self.warmup_steps) / max(1, self.t_total - self.warmup_steps)
        return max(self.eta_min, 0.5 * (1. + math.cos(math.pi * self.cycles * 2.0 * progress)))


# ==========Torch samplers==========

class DsBatchSampler(Sampler):
    def __init__(self, dataset, max_batch_frames, max_batch_size, sub_indices=None,
                 num_replicas=None, rank=None,
                 required_batch_count_multiple=1, batch_by_size=True, sort_by_similar_size=True,
                 size_reversed=False, shuffle_sample=False, shuffle_batch=False,
                 disallow_empty_batch=True, pad_batch_assignment=True, seed=0, drop_last=False) -> None:
        if rank >= num_replicas or rank < 0:
            raise ValueError(
                f"Invalid rank {rank}, rank should be in the interval [0, {num_replicas - 1}]")
        self.dataset = dataset
        self.max_batch_frames = max_batch_frames
        self.max_batch_size = max_batch_size
        self.sub_indices = sub_indices
        self.num_replicas = num_replicas
        self.rank = rank
        self.required_batch_count_multiple = required_batch_count_multiple
        self.batch_by_size = batch_by_size
        self.sort_by_similar_size = sort_by_similar_size
        self.size_reversed = size_reversed
        self.shuffle_sample = shuffle_sample
        self.shuffle_batch = shuffle_batch
        self.disallow_empty_batch = disallow_empty_batch
        self.pad_batch_assignment = pad_batch_assignment
        self.seed = seed
        self.drop_last = drop_last
        self.epoch = 0
        self.batches = None
        self.formed = None

    def __form_batches(self):
        if self.formed == self.epoch + self.seed:
            return
        rng = np.random.default_rng()
        # Create indices
        if self.shuffle_sample:
            if self.sub_indices is not None:
                rng.shuffle(self.sub_indices)
                indices = np.array(self.sub_indices)
            else:
                indices = rng.permutation(len(self.dataset))

            if self.sort_by_similar_size:
                grid = int(hparams['sampler_frame_count_grid'])
                assert grid > 0
                sizes = (np.round(np.array(self.dataset.sizes)[indices] / grid) * grid).clip(grid, None)
                sizes *= (-1 if self.size_reversed else 1)
                indices = indices[np.argsort(sizes, kind='mergesort')]

            indices = indices.tolist()
        else:
            indices = self.sub_indices if self.sub_indices is not None else list(range(len(self.dataset)))

        # Batching
        if self.batch_by_size:
            batches = utils.batch_by_size(
                indices, self.dataset.num_frames,
                max_batch_frames=self.max_batch_frames,
                max_batch_size=self.max_batch_size
            )
        else:
            batches = [indices[i:i + self.max_batch_size] for i in range(0, len(indices), self.max_batch_size)]
        if len(batches) < self.num_replicas and self.disallow_empty_batch:
            raise RuntimeError("There is not enough batch to assign to each node.")

        # Either drop_last or separate the leftovers.
        floored_total_batch_count = (len(batches) // self.num_replicas) * self.num_replicas
        if self.drop_last and len(batches) > floored_total_batch_count:
            batches = batches[:floored_total_batch_count]
            leftovers = []
            if len(batches) == 0:
                raise RuntimeError("There is no batch left after dropping the last batch.")
        elif self.shuffle_batch:
            leftovers = (rng.permutation(len(batches) - floored_total_batch_count) + floored_total_batch_count).tolist()
        else:
            leftovers = list(range(floored_total_batch_count, len(batches)))

        # Initial batch assignment to current rank.
        batch_assignment = np.arange(floored_total_batch_count).reshape(-1, self.num_replicas).transpose()
        if self.shuffle_batch:
            batch_assignment = rng.permuted(batch_assignment, axis=0)[self.rank].tolist()
        else:
            batch_assignment = batch_assignment[self.rank].tolist()

        # Assign leftovers or pad the batch assignment.
        floored_batch_count = len(batch_assignment)
        if self.rank < len(leftovers):
            batch_assignment.append(leftovers[self.rank])
            floored_batch_count += 1
        elif len(leftovers) > 0 and self.pad_batch_assignment:
            if not batch_assignment:
                raise RuntimeError("Cannot pad empty batch assignment.")
            batch_assignment.append(batch_assignment[self.epoch % floored_batch_count])
        # Ensure the batch count is multiple of required_batch_count_multiple.
        if self.required_batch_count_multiple > 1 and len(batch_assignment) % self.required_batch_count_multiple != 0:
            ceiled_batch_count = math.ceil(
                len(batch_assignment) / self.required_batch_count_multiple
            ) * self.required_batch_count_multiple
            for i in range(ceiled_batch_count - len(batch_assignment)):
                batch_assignment.append(
                    batch_assignment[(i + self.epoch * self.required_batch_count_multiple) % floored_batch_count])

        if batch_assignment:
            self.batches = [deepcopy(batches[i]) for i in batch_assignment]
        else:
            self.batches = [[]]
        self.formed = self.epoch + self.seed

        del indices
        del batches
        del batch_assignment

    def __iter__(self):
        self.__form_batches()
        return iter(self.batches)

    def __len__(self):
        self.__form_batches()
        if self.batches is None:
            raise RuntimeError("Batches are not initialized. Call __form_batches first.")
        return len(self.batches)

    def set_epoch(self, epoch):
        self.epoch = epoch
        self.__form_batches()



# ==========PL related==========

class DsModelCheckpoint(ModelCheckpoint):
    def __init__(
            self,
            *args,
            permanent_ckpt_start,
            permanent_ckpt_interval,
            **kwargs
    ):
        super().__init__(*args, **kwargs)
        self.permanent_ckpt_start = permanent_ckpt_start or 0
        self.permanent_ckpt_interval = permanent_ckpt_interval or 0
        self.enable_permanent_ckpt = self.permanent_ckpt_start > 0 and self.permanent_ckpt_interval > 9

        self._verbose = self.verbose
        self.verbose = False

    def state_dict(self):
        ret = super().state_dict()
        ret.pop('dirpath')
        return ret

    def load_state_dict(self, state_dict) -> None:
        super().load_state_dict(state_dict)

    def on_validation_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        if trainer.lightning_module.skip_immediate_ckpt_save:
            trainer.lightning_module.skip_immediate_ckpt_save = False
            return
        self.last_val_step = trainer.global_step
        super().on_validation_end(trainer, pl_module)

    def _update_best_and_save(
            self, current: torch.Tensor, trainer: "pl.Trainer", monitor_candidates: Dict[str, torch.Tensor]
    ) -> None:
        k = len(self.best_k_models) + 1 if self.save_top_k == -1 else self.save_top_k

        del_filepath = None
        _op = max if self.mode == "min" else min
        while len(self.best_k_models) > k and k > 0:
            self.kth_best_model_path = _op(self.best_k_models, key=self.best_k_models.get)  # type: ignore[arg-type]
            self.kth_value = self.best_k_models[self.kth_best_model_path]

            del_filepath = self.kth_best_model_path
            self.best_k_models.pop(del_filepath)
            filepath = self._get_metric_interpolated_filepath_name(monitor_candidates, trainer, del_filepath)
            if del_filepath is not None and filepath != del_filepath:
                self._remove_checkpoint(trainer, del_filepath)

        if len(self.best_k_models) == k and k > 0:
            self.kth_best_model_path = _op(self.best_k_models, key=self.best_k_models.get)  # type: ignore[arg-type]
            self.kth_value = self.best_k_models[self.kth_best_model_path]

        super()._update_best_and_save(current, trainer, monitor_candidates)

    def _save_checkpoint(self, trainer: "pl.Trainer", filepath: str) -> None:
        filepath = (Path(self.dirpath) / Path(filepath).name).resolve()
        super()._save_checkpoint(trainer, str(filepath))
        if self._verbose:
            relative_path = filepath
            # Avoid using `is_relative_to` because Python 3.8 does not support this
            if Path('.').resolve() in filepath.parents:
                relative_path = filepath.relative_to(Path('.').resolve())
            rank_zero_info(f'Checkpoint {relative_path} saved.')

    def _remove_checkpoint(self, trainer: "pl.Trainer", filepath: str):
        filepath = (Path(self.dirpath) / Path(filepath).name).resolve()
        relative_path = filepath
        # Avoid using `is_relative_to` because Python 3.8 does not support this
        if Path('.').resolve() in filepath.parents:
            relative_path = filepath.relative_to(Path('.').resolve())
        search = re.search(r'steps_\d+', relative_path.stem)
        if search:
            step = int(search.group(0)[6:])
            if self.enable_permanent_ckpt and \
                    step >= self.permanent_ckpt_start and \
                    (step - self.permanent_ckpt_start) % self.permanent_ckpt_interval == 0:
                rank_zero_info(f'Checkpoint {relative_path} is now permanent.')
                return
        super()._remove_checkpoint(trainer, filepath)
        if self._verbose:
            rank_zero_info(f'Removed checkpoint {relative_path}.')


def get_latest_checkpoint_path(work_dir):
    if not isinstance(work_dir, Path):
        work_dir = Path(work_dir)
    if not work_dir.exists():
        return None

    last_step = -1
    last_ckpt_name = None

    for ckpt in work_dir.glob('model_ckpt_steps_*.ckpt'):
        search = re.search(r'steps_\d+', ckpt.name)
        if search:
            step = int(search.group(0)[6:])
            if step > last_step:
                last_step = step
                last_ckpt_name = str(ckpt)

    return last_ckpt_name if last_ckpt_name is not None else None


class DsTQDMProgressBar(TQDMProgressBar):
    def __init__(self, refresh_rate: int = 1, process_position: int = 0, show_steps: bool = True):
        super().__init__(refresh_rate, process_position)
        self.show_steps = show_steps

    def get_metrics(self, trainer, model):
        items = super().get_metrics(trainer, model)
        if 'batch_size' in items:
            items['batch_size'] = int(items['batch_size'])
        if self.show_steps:
            items['steps'] = str(trainer.global_step)
        for k, v in items.items():
            if isinstance(v, float):
                if np.isnan(v):
                    items[k] = 'nan'
                elif 0.001 <= v < 10:
                    items[k] = np.format_float_positional(v, unique=True, precision=5, trim='-')
                elif 0.00001 <= v < 0.001:
                    if len(np.format_float_positional(v, unique=True, precision=8, trim='-')) > 8:
                        items[k] = np.format_float_scientific(v, precision=3, unique=True, min_digits=2, trim='-')
                    else:
                        items[k] = np.format_float_positional(v, unique=True, precision=5, trim='-')
                elif v < 0.00001:
                    items[k] = np.format_float_scientific(v, precision=3, unique=True, min_digits=2, trim='-')
        items.pop("v_num", None)
        return items


class DsTensorBoardLogger(TensorBoardLogger):
    @property
    def all_rank_experiment(self):
        if rank_zero_only.rank == 0:
            return self.experiment
        if hasattr(self, "_all_rank_experiment") and self._all_rank_experiment is not None:
            return self._all_rank_experiment

        assert rank_zero_only.rank != 0
        if self.root_dir:
            self._fs.makedirs(self.root_dir, exist_ok=True)

        if _TENSORBOARD_AVAILABLE:
            from torch.utils.tensorboard import SummaryWriter
        else:
            from tensorboardX import SummaryWriter  # type: ignore[no-redef]

        self._all_rank_experiment = SummaryWriter(log_dir=self.log_dir, **self._kwargs)
        return self._all_rank_experiment

    def finalize(self, status: str) -> None:
        if rank_zero_only.rank == 0:
            super().finalize(status)
        elif hasattr(self, "_all_rank_experiment") and self._all_rank_experiment is not None:
            self.all_rank_experiment.flush()
            self.all_rank_experiment.close()

    def __getstate__(self):
        state = super().__getstate__()
        if "_all_rank_experiment" in state:
            del state["_all_rank_experiment"]
        return state

def get_strategy(
    devices="auto",
    num_nodes=1,
    accelerator="auto",
    strategy={"name": "auto"},
    precision=None,
):
    from lightning.fabric.utilities.device_parser import _determine_root_gpu_device
    from lightning.pytorch.accelerators import AcceleratorRegistry
    from lightning.pytorch.accelerators.cuda import CUDAAccelerator
    from lightning.pytorch.accelerators.mps import MPSAccelerator
    from lightning.pytorch.strategies import Strategy, SingleDeviceStrategy, StrategyRegistry
    from lightning.pytorch.trainer.connectors import accelerator_connector
    from lightning.pytorch.utilities.rank_zero import rank_zero_warn
    class _DsAcceleratorConnector(accelerator_connector._AcceleratorConnector):
        def __init__(self) -> None:
            accelerator_connector._register_external_accelerators_and_strategies()
            self._registered_strategies = StrategyRegistry.available_strategies()
            self._accelerator_types = AcceleratorRegistry.available_accelerators()
            self._parallel_devices = []
            self._check_config_and_set_final_flags(
                strategy=strategy["name"],
                accelerator=accelerator,
                precision=precision,
                plugins=[],
                sync_batchnorm=False,
            )
            if self._accelerator_flag == "auto":
                self._accelerator_flag = self._choose_auto_accelerator()
            elif self._accelerator_flag == "gpu":
                self._accelerator_flag = self._choose_gpu_accelerator_backend()
            self._check_device_config_and_set_final_flags(devices=devices, num_nodes=num_nodes)
            self._set_parallel_devices_and_init_accelerator()
            if self._strategy_flag == "auto":
                self._strategy_flag = self._choose_strategy()
            self._check_strategy_and_fallback()
            self._init_strategy()
            for k in ["colossalai", "bagua", "hpu", "hpu_parallel", "hpu_single", "ipu", "ipu_strategy"]:
                if k in StrategyRegistry:
                    StrategyRegistry.remove(k)

        def _init_strategy(self) -> None:
            assert isinstance(self._strategy_flag, (str, Strategy))
            if isinstance(self._strategy_flag, str):
                if self._strategy_flag not in StrategyRegistry:
                    available_names = ", ".join(sorted(StrategyRegistry.available_strategies())) or "none"
                    raise KeyError(f"Invalid strategy name {strategy['name']}. Available names: {available_names}")
                data = StrategyRegistry[self._strategy_flag]
                params = {}
                # Replicate additional logic for _choose_strategy when dealing with single device strategies
                if issubclass(data["strategy"], SingleDeviceStrategy):
                    if self._accelerator_flag == "hpu":
                        params = {"device": torch.device("hpu")}
                    elif self._accelerator_flag == "tpu":
                        params = {"device": self._parallel_devices[0]}
                    elif data["strategy"] is SingleDeviceStrategy:
                        if isinstance(self._accelerator_flag, (CUDAAccelerator, MPSAccelerator)) or (
                            isinstance(self._accelerator_flag, str) and self._accelerator_flag in ("cuda", "gpu", "mps")
                        ):
                            params = {"device": _determine_root_gpu_device(self._parallel_devices)}
                        else:
                            params = {"device": "cpu"}
                    else:
                        raise NotImplementedError
                params.update(data["init_params"])
                params.update({k: v for k, v in strategy.items() if k != "name"})
                self.strategy = data["strategy"](**utils.filter_kwargs(params, data["strategy"]))
            elif isinstance(self._strategy_flag, SingleDeviceStrategy):
                params = {"device": self._strategy_flag.root_device}
                params.update({k: v for k, v in strategy.items() if k != "name"})
                self.strategy = self._strategy_flag.__class__(**utils.filter_kwargs(params, self._strategy_flag.__class__))
            else:
                rank_zero_warn(
                    f"Inferred strategy {self._strategy_flag.__class__.__name__} cannot take custom configurations."
                    f"To use custom configurations, please specify the strategy name explicitly."
                )
                self.strategy = self._strategy_flag

    return _DsAcceleratorConnector().strategy