CantusSVS-hf / utils /onnx_helper.py
liampond
Clean deploy snapshot
c42fe7e
import re
from typing import Dict, Tuple, Union
import onnx
from google.protobuf.internal.containers import RepeatedCompositeFieldContainer
from onnx import GraphProto, ModelProto, NodeProto, ValueInfoProto
__verbose__: bool = True
"""
Whether log information of successful operations
"""
def _verbose(self, *args, sep=' ', end='\n', file=None):
if __verbose__:
print(self, *args, sep=sep, end=end, file=file)
def model_override_io_shapes(
model: ModelProto,
input_shapes: Dict[str, Tuple[Union[str, int]]] = None,
output_shapes: Dict[str, Tuple[Union[str, int]]] = None,
):
"""
Override the shapes of inputs/outputs of the model graph (in-place operation).
:param model: model to perform the operation on
:param input_shapes: a dict with keys as input/output names and values as shape tuples
:param output_shapes: the same as input_shapes
"""
def _override_shapes(
shape_list_old: RepeatedCompositeFieldContainer[ValueInfoProto],
shape_dict_new: Dict[str, Tuple[Union[str, int]]]):
for value_info in shape_list_old:
if value_info.name in shape_dict_new:
name = value_info.name
dims = value_info.type.tensor_type.shape.dim
assert len(shape_dict_new[name]) == len(dims), \
f'Number of given and existing dimensions mismatch: {name}'
for i, dim in enumerate(shape_dict_new[name]):
if isinstance(dim, int):
dims[i].dim_param = ''
dims[i].dim_value = dim
else:
dims[i].dim_value = 0
dims[i].dim_param = dim
_verbose(f'| override shape of \'{name}\' with {shape_dict_new[name]}')
if input_shapes is not None:
_override_shapes(model.graph.input, input_shapes)
if output_shapes is not None:
_override_shapes(model.graph.output, output_shapes)
def model_add_prefixes(
model: ModelProto,
initializer_prefix=None,
value_info_prefix=None,
node_prefix=None,
dim_prefix=None,
ignored_pattern=None,
):
"""
Adds prefixes to names inside the given ONNX model graph, including sub-graphs (in-place operation).
This method is a complete version of the official onnx.compose.add_prefix API, which does not consider sub-graphs.
"""
initializers = set()
value_infos = set()
def _record_initializers_and_value_infos_recursive(subgraph):
# Record names in current graph
for initializer in subgraph.initializer:
if ignored_pattern is not None and re.match(ignored_pattern, initializer.name):
continue
initializers.add(initializer.name)
for value_info in subgraph.value_info:
if ignored_pattern is not None and re.match(ignored_pattern, value_info.name):
continue
value_infos.add(value_info.name)
for node in subgraph.node:
# For 'If' and 'Loop' nodes, do recording recursively
if node.op_type == 'If':
for attr in node.attribute:
branch = onnx.helper.get_attribute_value(attr)
_record_initializers_and_value_infos_recursive(branch)
elif node.op_type == 'Loop':
for attr in node.attribute:
if attr.name == 'body':
body = onnx.helper.get_attribute_value(attr)
_record_initializers_and_value_infos_recursive(body)
def _add_prefixes_recursive(subgraph):
# Add prefixes in current graph
if initializer_prefix is not None:
for initializer in subgraph.initializer:
if ignored_pattern is not None and re.match(ignored_pattern, initializer.name):
continue
new_name = initializer_prefix + initializer.name
_verbose('| add prefix:', initializer.name, '->', new_name)
initializer.name = new_name
for value_info in subgraph.value_info:
if dim_prefix is not None:
for dim in value_info.type.tensor_type.shape.dim:
if dim.dim_param is None or dim.dim_param == '' or \
ignored_pattern is not None and re.match(ignored_pattern, dim.dim_param):
continue
new_dim_param = dim_prefix + dim.dim_param
_verbose('| add prefix:', dim.dim_param, '->', new_dim_param)
dim.dim_param = new_dim_param
if value_info_prefix is None or \
ignored_pattern is not None and re.match(ignored_pattern, value_info.name):
continue
new_name = value_info_prefix + value_info.name
_verbose('| add prefix:', value_info.name, '->', new_name)
value_info.name = new_name
if node_prefix is not None:
for node in subgraph.node:
if ignored_pattern is not None and re.match(ignored_pattern, node.name):
continue
new_name = node_prefix + node.name
_verbose('| add prefix:', node.name, '->', new_name)
node.name = new_name
for node in subgraph.node:
# For 'If' and 'Loop' nodes, add prefixes recursively
if node.op_type == 'If':
for attr in node.attribute:
branch = onnx.helper.get_attribute_value(attr)
_add_prefixes_recursive(branch)
elif node.op_type == 'Loop':
for attr in node.attribute:
if attr.name == 'body':
body = onnx.helper.get_attribute_value(attr)
_add_prefixes_recursive(body)
# For each node, rename its inputs and outputs
for io_list in [node.input, node.output]:
for i, io_value in enumerate(io_list):
if io_value in initializers and initializer_prefix is not None:
new_value = initializer_prefix + io_value
_verbose('| add prefix:', io_value, '->', new_value)
io_list[i] = new_value
if io_value in value_infos and value_info_prefix is not None:
new_value = value_info_prefix + io_value
_verbose('| add prefix:', io_value, '->', new_value)
io_list[i] = new_value
_record_initializers_and_value_infos_recursive(model.graph)
_add_prefixes_recursive(model.graph)
def graph_fold_back_to_squeeze(graph: GraphProto):
"""
Fold the substructures of 'Shape', 'Gather', 'Equal', 'If' to one single 'Squeeze' node.
This can unify the different behaviors between aten::squeeze and onnx:Squeeze.
"""
def _graph_fold_back_to_squeeze_recursive(subgraph: GraphProto):
# Do folding in sub-graphs recursively.
for node in subgraph.node:
if node.op_type == 'If':
for attr in node.attribute:
branch = onnx.helper.get_attribute_value(attr)
_graph_fold_back_to_squeeze_recursive(branch)
elif node.op_type == 'Loop':
for attr in node.attribute:
if attr.name == 'body':
body = onnx.helper.get_attribute_value(attr)
_graph_fold_back_to_squeeze_recursive(body)
# Do folding in current graph.
i_shape = 0
while i_shape < len(subgraph.node):
if subgraph.node[i_shape].op_type == 'Shape':
shape_node = subgraph.node[i_shape]
shape_out = shape_node.output[0]
i_gather = i_shape + 1
while i_gather < len(subgraph.node):
if subgraph.node[i_gather].op_type == 'Gather' and subgraph.node[i_gather].input[0] == shape_out:
gather_node = subgraph.node[i_gather]
gather_out = gather_node.output[0]
i_equal = i_gather + 1
while i_equal < len(subgraph.node):
if subgraph.node[i_equal].op_type == 'Equal' and (
subgraph.node[i_equal].input[0] == gather_out
or subgraph.node[i_equal].input[1] == gather_out):
equal_node = subgraph.node[i_equal]
equal_out = equal_node.output[0]
i_if = i_equal + 1
while i_if < len(subgraph.node):
if subgraph.node[i_if].op_type == 'If' \
and subgraph.node[i_if].input[0] == equal_out:
# Found the substructure to be folded.
if_node = subgraph.node[i_if]
# Create 'Squeeze' node.
squeeze_node = onnx.helper.make_node(
op_type='Squeeze',
inputs=[
*list(shape_node.input),
# For ONNX opset >= 13, axes should be an input instead of an attribute.
gather_node.input[1] # Use 'indices' input of 'Gather'
],
outputs=if_node.output,
name=shape_node.name.replace('Shape', 'Squeeze')
)
# Replace 'Shape', 'Gather', 'Equal', 'If' with 'Squeeze'.
subgraph.node.insert(i_shape, squeeze_node)
subgraph.node.remove(shape_node)
subgraph.node.remove(gather_node)
subgraph.node.remove(equal_node)
subgraph.node.remove(if_node)
_verbose(
f'| fold nodes: [\'{shape_node.name}\', \'{gather_node.name}\', '
f'\'{equal_node.name}\', \'{if_node.name}\'] -> \'{squeeze_node.name}\'')
break
i_if += 1
else:
break
i_equal += 1
else:
break
i_gather += 1
else:
break
i_shape += 1
_graph_fold_back_to_squeeze_recursive(graph)
def graph_extract_conditioner_projections(
graph: GraphProto,
op_type: str,
weight_pattern: str,
alias_prefix: str
):
"""
Extract conditioner projection nodes out of the backbone wrapped by diffusion.
These nodes only need to be calculated once before entering the main denoising loop,
and can be reused inside the loop. This optimizes the performance of ONNX inference.
:param graph: graph to perform the operation on
:param op_type: the ONNX operator type of the conditioner projections (usually 'Conv' or 'Gemm')
:param weight_pattern: a regular expression as pattern of the conditioner projection weight keys
:param alias_prefix: add prefixes to the outputs of extracted projection nodes
"""
node_dict: Dict[str, Tuple[str, NodeProto]] = {} # key: pattern match, value: (alias, node)
def _extract_conv_nodes_recursive(subgraph: GraphProto):
to_be_removed = []
for sub_node in subgraph.node:
if sub_node.op_type == 'If':
for attr in sub_node.attribute:
branch = onnx.helper.get_attribute_value(attr)
_extract_conv_nodes_recursive(branch)
elif sub_node.op_type == 'Loop':
for attr in sub_node.attribute:
if attr.name == 'body':
body = onnx.helper.get_attribute_value(attr)
_extract_conv_nodes_recursive(body)
elif sub_node.op_type == op_type and re.match(weight_pattern, sub_node.input[1]):
# Found node to extract
cached = node_dict.get(sub_node.input[1])
if cached is None:
out_alias = f'{alias_prefix}.{len(node_dict)}'
node_dict[sub_node.input[1]] = (out_alias, sub_node)
else:
out_alias = cached[0]
out = sub_node.output[0]
# Search for nodes downstream the extracted node and match them to the renamed output.
for dep_node in subgraph.node:
for dep_idx, dep_input in enumerate(dep_node.input):
if dep_input == out:
dep_node.input.remove(out)
dep_node.input.insert(dep_idx, out_alias)
# Add the node to the remove list.
to_be_removed.append(sub_node)
[subgraph.node.remove(_n) for _n in to_be_removed]
toplevel_entry_node_idx = toplevel_entry_node = None
# Find the **last** If node in toplevel graph
for i, n in enumerate(graph.node):
if n.op_type == 'If':
toplevel_entry_node_idx = i
toplevel_entry_node = n
# If not found, find the **last** Loop node in toplevel graph
if toplevel_entry_node is None:
for i, n in enumerate(graph.node):
if n.op_type == 'Loop':
toplevel_entry_node_idx = i
toplevel_entry_node = n
if toplevel_entry_node is not None:
for a in toplevel_entry_node.attribute:
# Apply to all sub-graphs
v = onnx.helper.get_attribute_value(a)
if isinstance(v, GraphProto):
_extract_conv_nodes_recursive(v)
# Insert the extracted nodes before the first 'If' node which carries the main denoising loop.
for key in reversed(node_dict):
alias, node = node_dict[key]
# Rename output of the node.
out_name = node.output[0]
node.output.remove(node.output[0])
node.output.insert(0, alias)
# Insert node into the main graph.
graph.node.insert(toplevel_entry_node_idx, node)
# Rename value info of the output.
for v in graph.value_info:
if v.name == out_name:
v.name = alias
break
_verbose(f'| extract conditioner projection: \'{node.name}\'')
def graph_remove_unused_values(graph: GraphProto):
used_values = set()
def _record_usage_recursive(subgraph: GraphProto):
for node in subgraph.node:
# For 'If' and 'Loop' nodes, do recording recursively
if node.op_type == 'If':
for attr in node.attribute:
branch = onnx.helper.get_attribute_value(attr)
_record_usage_recursive(branch)
elif node.op_type == 'Loop':
for attr in node.attribute:
if attr.name == 'body':
body = onnx.helper.get_attribute_value(attr)
_record_usage_recursive(body)
# For each node, record its inputs and outputs
for io_list in [node.input, node.output]:
for io_value in io_list:
used_values.add(io_value)
def _clean_unused_recursively(subgraph):
# Do cleaning in sub-graphs recursively.
for node in subgraph.node:
if node.op_type == 'If':
for attr in node.attribute:
branch = onnx.helper.get_attribute_value(attr)
_clean_unused_recursively(branch)
elif node.op_type == 'Loop':
for attr in node.attribute:
if attr.name == 'body':
body = onnx.helper.get_attribute_value(attr)
_clean_unused_recursively(body)
# Do cleaning in current graph.
i = 0
while i < len(subgraph.initializer):
name = subgraph.initializer[i].name
if name not in used_values:
subgraph.initializer.pop(i)
_verbose(f'| remove unused initializer: {name}')
else:
i += 1
i = 0
while i < len(subgraph.value_info):
name = subgraph.value_info[i].name
if name not in used_values:
subgraph.value_info.pop(i)
_verbose(f'| remove unused value info: {name}')
else:
i += 1
_record_usage_recursive(graph)
_clean_unused_recursively(graph)