Spaces:
Sleeping
Sleeping
File size: 17,334 Bytes
c42fe7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import re
from typing import Dict, Tuple, Union
import onnx
from google.protobuf.internal.containers import RepeatedCompositeFieldContainer
from onnx import GraphProto, ModelProto, NodeProto, ValueInfoProto
__verbose__: bool = True
"""
Whether log information of successful operations
"""
def _verbose(self, *args, sep=' ', end='\n', file=None):
if __verbose__:
print(self, *args, sep=sep, end=end, file=file)
def model_override_io_shapes(
model: ModelProto,
input_shapes: Dict[str, Tuple[Union[str, int]]] = None,
output_shapes: Dict[str, Tuple[Union[str, int]]] = None,
):
"""
Override the shapes of inputs/outputs of the model graph (in-place operation).
:param model: model to perform the operation on
:param input_shapes: a dict with keys as input/output names and values as shape tuples
:param output_shapes: the same as input_shapes
"""
def _override_shapes(
shape_list_old: RepeatedCompositeFieldContainer[ValueInfoProto],
shape_dict_new: Dict[str, Tuple[Union[str, int]]]):
for value_info in shape_list_old:
if value_info.name in shape_dict_new:
name = value_info.name
dims = value_info.type.tensor_type.shape.dim
assert len(shape_dict_new[name]) == len(dims), \
f'Number of given and existing dimensions mismatch: {name}'
for i, dim in enumerate(shape_dict_new[name]):
if isinstance(dim, int):
dims[i].dim_param = ''
dims[i].dim_value = dim
else:
dims[i].dim_value = 0
dims[i].dim_param = dim
_verbose(f'| override shape of \'{name}\' with {shape_dict_new[name]}')
if input_shapes is not None:
_override_shapes(model.graph.input, input_shapes)
if output_shapes is not None:
_override_shapes(model.graph.output, output_shapes)
def model_add_prefixes(
model: ModelProto,
initializer_prefix=None,
value_info_prefix=None,
node_prefix=None,
dim_prefix=None,
ignored_pattern=None,
):
"""
Adds prefixes to names inside the given ONNX model graph, including sub-graphs (in-place operation).
This method is a complete version of the official onnx.compose.add_prefix API, which does not consider sub-graphs.
"""
initializers = set()
value_infos = set()
def _record_initializers_and_value_infos_recursive(subgraph):
# Record names in current graph
for initializer in subgraph.initializer:
if ignored_pattern is not None and re.match(ignored_pattern, initializer.name):
continue
initializers.add(initializer.name)
for value_info in subgraph.value_info:
if ignored_pattern is not None and re.match(ignored_pattern, value_info.name):
continue
value_infos.add(value_info.name)
for node in subgraph.node:
# For 'If' and 'Loop' nodes, do recording recursively
if node.op_type == 'If':
for attr in node.attribute:
branch = onnx.helper.get_attribute_value(attr)
_record_initializers_and_value_infos_recursive(branch)
elif node.op_type == 'Loop':
for attr in node.attribute:
if attr.name == 'body':
body = onnx.helper.get_attribute_value(attr)
_record_initializers_and_value_infos_recursive(body)
def _add_prefixes_recursive(subgraph):
# Add prefixes in current graph
if initializer_prefix is not None:
for initializer in subgraph.initializer:
if ignored_pattern is not None and re.match(ignored_pattern, initializer.name):
continue
new_name = initializer_prefix + initializer.name
_verbose('| add prefix:', initializer.name, '->', new_name)
initializer.name = new_name
for value_info in subgraph.value_info:
if dim_prefix is not None:
for dim in value_info.type.tensor_type.shape.dim:
if dim.dim_param is None or dim.dim_param == '' or \
ignored_pattern is not None and re.match(ignored_pattern, dim.dim_param):
continue
new_dim_param = dim_prefix + dim.dim_param
_verbose('| add prefix:', dim.dim_param, '->', new_dim_param)
dim.dim_param = new_dim_param
if value_info_prefix is None or \
ignored_pattern is not None and re.match(ignored_pattern, value_info.name):
continue
new_name = value_info_prefix + value_info.name
_verbose('| add prefix:', value_info.name, '->', new_name)
value_info.name = new_name
if node_prefix is not None:
for node in subgraph.node:
if ignored_pattern is not None and re.match(ignored_pattern, node.name):
continue
new_name = node_prefix + node.name
_verbose('| add prefix:', node.name, '->', new_name)
node.name = new_name
for node in subgraph.node:
# For 'If' and 'Loop' nodes, add prefixes recursively
if node.op_type == 'If':
for attr in node.attribute:
branch = onnx.helper.get_attribute_value(attr)
_add_prefixes_recursive(branch)
elif node.op_type == 'Loop':
for attr in node.attribute:
if attr.name == 'body':
body = onnx.helper.get_attribute_value(attr)
_add_prefixes_recursive(body)
# For each node, rename its inputs and outputs
for io_list in [node.input, node.output]:
for i, io_value in enumerate(io_list):
if io_value in initializers and initializer_prefix is not None:
new_value = initializer_prefix + io_value
_verbose('| add prefix:', io_value, '->', new_value)
io_list[i] = new_value
if io_value in value_infos and value_info_prefix is not None:
new_value = value_info_prefix + io_value
_verbose('| add prefix:', io_value, '->', new_value)
io_list[i] = new_value
_record_initializers_and_value_infos_recursive(model.graph)
_add_prefixes_recursive(model.graph)
def graph_fold_back_to_squeeze(graph: GraphProto):
"""
Fold the substructures of 'Shape', 'Gather', 'Equal', 'If' to one single 'Squeeze' node.
This can unify the different behaviors between aten::squeeze and onnx:Squeeze.
"""
def _graph_fold_back_to_squeeze_recursive(subgraph: GraphProto):
# Do folding in sub-graphs recursively.
for node in subgraph.node:
if node.op_type == 'If':
for attr in node.attribute:
branch = onnx.helper.get_attribute_value(attr)
_graph_fold_back_to_squeeze_recursive(branch)
elif node.op_type == 'Loop':
for attr in node.attribute:
if attr.name == 'body':
body = onnx.helper.get_attribute_value(attr)
_graph_fold_back_to_squeeze_recursive(body)
# Do folding in current graph.
i_shape = 0
while i_shape < len(subgraph.node):
if subgraph.node[i_shape].op_type == 'Shape':
shape_node = subgraph.node[i_shape]
shape_out = shape_node.output[0]
i_gather = i_shape + 1
while i_gather < len(subgraph.node):
if subgraph.node[i_gather].op_type == 'Gather' and subgraph.node[i_gather].input[0] == shape_out:
gather_node = subgraph.node[i_gather]
gather_out = gather_node.output[0]
i_equal = i_gather + 1
while i_equal < len(subgraph.node):
if subgraph.node[i_equal].op_type == 'Equal' and (
subgraph.node[i_equal].input[0] == gather_out
or subgraph.node[i_equal].input[1] == gather_out):
equal_node = subgraph.node[i_equal]
equal_out = equal_node.output[0]
i_if = i_equal + 1
while i_if < len(subgraph.node):
if subgraph.node[i_if].op_type == 'If' \
and subgraph.node[i_if].input[0] == equal_out:
# Found the substructure to be folded.
if_node = subgraph.node[i_if]
# Create 'Squeeze' node.
squeeze_node = onnx.helper.make_node(
op_type='Squeeze',
inputs=[
*list(shape_node.input),
# For ONNX opset >= 13, axes should be an input instead of an attribute.
gather_node.input[1] # Use 'indices' input of 'Gather'
],
outputs=if_node.output,
name=shape_node.name.replace('Shape', 'Squeeze')
)
# Replace 'Shape', 'Gather', 'Equal', 'If' with 'Squeeze'.
subgraph.node.insert(i_shape, squeeze_node)
subgraph.node.remove(shape_node)
subgraph.node.remove(gather_node)
subgraph.node.remove(equal_node)
subgraph.node.remove(if_node)
_verbose(
f'| fold nodes: [\'{shape_node.name}\', \'{gather_node.name}\', '
f'\'{equal_node.name}\', \'{if_node.name}\'] -> \'{squeeze_node.name}\'')
break
i_if += 1
else:
break
i_equal += 1
else:
break
i_gather += 1
else:
break
i_shape += 1
_graph_fold_back_to_squeeze_recursive(graph)
def graph_extract_conditioner_projections(
graph: GraphProto,
op_type: str,
weight_pattern: str,
alias_prefix: str
):
"""
Extract conditioner projection nodes out of the backbone wrapped by diffusion.
These nodes only need to be calculated once before entering the main denoising loop,
and can be reused inside the loop. This optimizes the performance of ONNX inference.
:param graph: graph to perform the operation on
:param op_type: the ONNX operator type of the conditioner projections (usually 'Conv' or 'Gemm')
:param weight_pattern: a regular expression as pattern of the conditioner projection weight keys
:param alias_prefix: add prefixes to the outputs of extracted projection nodes
"""
node_dict: Dict[str, Tuple[str, NodeProto]] = {} # key: pattern match, value: (alias, node)
def _extract_conv_nodes_recursive(subgraph: GraphProto):
to_be_removed = []
for sub_node in subgraph.node:
if sub_node.op_type == 'If':
for attr in sub_node.attribute:
branch = onnx.helper.get_attribute_value(attr)
_extract_conv_nodes_recursive(branch)
elif sub_node.op_type == 'Loop':
for attr in sub_node.attribute:
if attr.name == 'body':
body = onnx.helper.get_attribute_value(attr)
_extract_conv_nodes_recursive(body)
elif sub_node.op_type == op_type and re.match(weight_pattern, sub_node.input[1]):
# Found node to extract
cached = node_dict.get(sub_node.input[1])
if cached is None:
out_alias = f'{alias_prefix}.{len(node_dict)}'
node_dict[sub_node.input[1]] = (out_alias, sub_node)
else:
out_alias = cached[0]
out = sub_node.output[0]
# Search for nodes downstream the extracted node and match them to the renamed output.
for dep_node in subgraph.node:
for dep_idx, dep_input in enumerate(dep_node.input):
if dep_input == out:
dep_node.input.remove(out)
dep_node.input.insert(dep_idx, out_alias)
# Add the node to the remove list.
to_be_removed.append(sub_node)
[subgraph.node.remove(_n) for _n in to_be_removed]
toplevel_entry_node_idx = toplevel_entry_node = None
# Find the **last** If node in toplevel graph
for i, n in enumerate(graph.node):
if n.op_type == 'If':
toplevel_entry_node_idx = i
toplevel_entry_node = n
# If not found, find the **last** Loop node in toplevel graph
if toplevel_entry_node is None:
for i, n in enumerate(graph.node):
if n.op_type == 'Loop':
toplevel_entry_node_idx = i
toplevel_entry_node = n
if toplevel_entry_node is not None:
for a in toplevel_entry_node.attribute:
# Apply to all sub-graphs
v = onnx.helper.get_attribute_value(a)
if isinstance(v, GraphProto):
_extract_conv_nodes_recursive(v)
# Insert the extracted nodes before the first 'If' node which carries the main denoising loop.
for key in reversed(node_dict):
alias, node = node_dict[key]
# Rename output of the node.
out_name = node.output[0]
node.output.remove(node.output[0])
node.output.insert(0, alias)
# Insert node into the main graph.
graph.node.insert(toplevel_entry_node_idx, node)
# Rename value info of the output.
for v in graph.value_info:
if v.name == out_name:
v.name = alias
break
_verbose(f'| extract conditioner projection: \'{node.name}\'')
def graph_remove_unused_values(graph: GraphProto):
used_values = set()
def _record_usage_recursive(subgraph: GraphProto):
for node in subgraph.node:
# For 'If' and 'Loop' nodes, do recording recursively
if node.op_type == 'If':
for attr in node.attribute:
branch = onnx.helper.get_attribute_value(attr)
_record_usage_recursive(branch)
elif node.op_type == 'Loop':
for attr in node.attribute:
if attr.name == 'body':
body = onnx.helper.get_attribute_value(attr)
_record_usage_recursive(body)
# For each node, record its inputs and outputs
for io_list in [node.input, node.output]:
for io_value in io_list:
used_values.add(io_value)
def _clean_unused_recursively(subgraph):
# Do cleaning in sub-graphs recursively.
for node in subgraph.node:
if node.op_type == 'If':
for attr in node.attribute:
branch = onnx.helper.get_attribute_value(attr)
_clean_unused_recursively(branch)
elif node.op_type == 'Loop':
for attr in node.attribute:
if attr.name == 'body':
body = onnx.helper.get_attribute_value(attr)
_clean_unused_recursively(body)
# Do cleaning in current graph.
i = 0
while i < len(subgraph.initializer):
name = subgraph.initializer[i].name
if name not in used_values:
subgraph.initializer.pop(i)
_verbose(f'| remove unused initializer: {name}')
else:
i += 1
i = 0
while i < len(subgraph.value_info):
name = subgraph.value_info[i].name
if name not in used_values:
subgraph.value_info.pop(i)
_verbose(f'| remove unused value info: {name}')
else:
i += 1
_record_usage_recursive(graph)
_clean_unused_recursively(graph)
|