File size: 17,334 Bytes
c42fe7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import re
from typing import Dict, Tuple, Union

import onnx
from google.protobuf.internal.containers import RepeatedCompositeFieldContainer
from onnx import GraphProto, ModelProto, NodeProto, ValueInfoProto

__verbose__: bool = True
"""
Whether log information of successful operations
"""


def _verbose(self, *args, sep=' ', end='\n', file=None):
    if __verbose__:
        print(self, *args, sep=sep, end=end, file=file)


def model_override_io_shapes(
        model: ModelProto,
        input_shapes: Dict[str, Tuple[Union[str, int]]] = None,
        output_shapes: Dict[str, Tuple[Union[str, int]]] = None,
):
    """
    Override the shapes of inputs/outputs of the model graph (in-place operation).
    :param model: model to perform the operation on
    :param input_shapes: a dict with keys as input/output names and values as shape tuples
    :param output_shapes: the same as input_shapes
    """
    def _override_shapes(
            shape_list_old: RepeatedCompositeFieldContainer[ValueInfoProto],
            shape_dict_new: Dict[str, Tuple[Union[str, int]]]):
        for value_info in shape_list_old:
            if value_info.name in shape_dict_new:
                name = value_info.name
                dims = value_info.type.tensor_type.shape.dim
                assert len(shape_dict_new[name]) == len(dims), \
                    f'Number of given and existing dimensions mismatch: {name}'
                for i, dim in enumerate(shape_dict_new[name]):
                    if isinstance(dim, int):
                        dims[i].dim_param = ''
                        dims[i].dim_value = dim
                    else:
                        dims[i].dim_value = 0
                        dims[i].dim_param = dim
                _verbose(f'| override shape of \'{name}\' with {shape_dict_new[name]}')

    if input_shapes is not None:
        _override_shapes(model.graph.input, input_shapes)
    if output_shapes is not None:
        _override_shapes(model.graph.output, output_shapes)


def model_add_prefixes(
        model: ModelProto,
        initializer_prefix=None,
        value_info_prefix=None,
        node_prefix=None,
        dim_prefix=None,
        ignored_pattern=None,
):
    """
    Adds prefixes to names inside the given ONNX model graph, including sub-graphs (in-place operation).
    This method is a complete version of the official onnx.compose.add_prefix API, which does not consider sub-graphs.
    """
    initializers = set()
    value_infos = set()

    def _record_initializers_and_value_infos_recursive(subgraph):
        # Record names in current graph
        for initializer in subgraph.initializer:
            if ignored_pattern is not None and re.match(ignored_pattern, initializer.name):
                continue
            initializers.add(initializer.name)
        for value_info in subgraph.value_info:
            if ignored_pattern is not None and re.match(ignored_pattern, value_info.name):
                continue
            value_infos.add(value_info.name)
        for node in subgraph.node:
            # For 'If' and 'Loop' nodes, do recording recursively
            if node.op_type == 'If':
                for attr in node.attribute:
                    branch = onnx.helper.get_attribute_value(attr)
                    _record_initializers_and_value_infos_recursive(branch)
            elif node.op_type == 'Loop':
                for attr in node.attribute:
                    if attr.name == 'body':
                        body = onnx.helper.get_attribute_value(attr)
                        _record_initializers_and_value_infos_recursive(body)

    def _add_prefixes_recursive(subgraph):
        # Add prefixes in current graph
        if initializer_prefix is not None:
            for initializer in subgraph.initializer:
                if ignored_pattern is not None and re.match(ignored_pattern, initializer.name):
                    continue
                new_name = initializer_prefix + initializer.name
                _verbose('| add prefix:', initializer.name, '->', new_name)
                initializer.name = new_name
        
        for value_info in subgraph.value_info:
            if dim_prefix is not None:
                for dim in value_info.type.tensor_type.shape.dim:
                    if dim.dim_param is None or dim.dim_param == '' or \
                            ignored_pattern is not None and re.match(ignored_pattern, dim.dim_param):
                        continue
                    new_dim_param = dim_prefix + dim.dim_param
                    _verbose('| add prefix:', dim.dim_param, '->', new_dim_param)
                    dim.dim_param = new_dim_param

            if value_info_prefix is None or \
                    ignored_pattern is not None and re.match(ignored_pattern, value_info.name):
                continue
            new_name = value_info_prefix + value_info.name
            _verbose('| add prefix:', value_info.name, '->', new_name)
            value_info.name = new_name
        
        if node_prefix is not None:
            for node in subgraph.node:
                if ignored_pattern is not None and re.match(ignored_pattern, node.name):
                    continue
                new_name = node_prefix + node.name
                _verbose('| add prefix:', node.name, '->', new_name)
                node.name = new_name
        
        for node in subgraph.node:
            # For 'If' and 'Loop' nodes, add prefixes recursively
            if node.op_type == 'If':
                for attr in node.attribute:
                    branch = onnx.helper.get_attribute_value(attr)
                    _add_prefixes_recursive(branch)
            elif node.op_type == 'Loop':
                for attr in node.attribute:
                    if attr.name == 'body':
                        body = onnx.helper.get_attribute_value(attr)
                        _add_prefixes_recursive(body)
            
            # For each node, rename its inputs and outputs
            for io_list in [node.input, node.output]:
                for i, io_value in enumerate(io_list):
                    if io_value in initializers and initializer_prefix is not None:
                        new_value = initializer_prefix + io_value
                        _verbose('| add prefix:', io_value, '->', new_value)
                        io_list[i] = new_value
                    if io_value in value_infos and value_info_prefix is not None:
                        new_value = value_info_prefix + io_value
                        _verbose('| add prefix:', io_value, '->', new_value)
                        io_list[i] = new_value

    _record_initializers_and_value_infos_recursive(model.graph)
    _add_prefixes_recursive(model.graph)


def graph_fold_back_to_squeeze(graph: GraphProto):
    """
    Fold the substructures of 'Shape', 'Gather', 'Equal', 'If' to one single 'Squeeze' node.
    This can unify the different behaviors between aten::squeeze and onnx:Squeeze.
    """
    def _graph_fold_back_to_squeeze_recursive(subgraph: GraphProto):
        # Do folding in sub-graphs recursively.
        for node in subgraph.node:
            if node.op_type == 'If':
                for attr in node.attribute:
                    branch = onnx.helper.get_attribute_value(attr)
                    _graph_fold_back_to_squeeze_recursive(branch)
            elif node.op_type == 'Loop':
                for attr in node.attribute:
                    if attr.name == 'body':
                        body = onnx.helper.get_attribute_value(attr)
                        _graph_fold_back_to_squeeze_recursive(body)

        # Do folding in current graph.
        i_shape = 0
        while i_shape < len(subgraph.node):
            if subgraph.node[i_shape].op_type == 'Shape':
                shape_node = subgraph.node[i_shape]
                shape_out = shape_node.output[0]
                i_gather = i_shape + 1
                while i_gather < len(subgraph.node):
                    if subgraph.node[i_gather].op_type == 'Gather' and subgraph.node[i_gather].input[0] == shape_out:
                        gather_node = subgraph.node[i_gather]
                        gather_out = gather_node.output[0]
                        i_equal = i_gather + 1
                        while i_equal < len(subgraph.node):
                            if subgraph.node[i_equal].op_type == 'Equal' and (
                                    subgraph.node[i_equal].input[0] == gather_out
                                    or subgraph.node[i_equal].input[1] == gather_out):
                                equal_node = subgraph.node[i_equal]
                                equal_out = equal_node.output[0]
                                i_if = i_equal + 1
                                while i_if < len(subgraph.node):
                                    if subgraph.node[i_if].op_type == 'If' \
                                            and subgraph.node[i_if].input[0] == equal_out:
                                        # Found the substructure to be folded.
                                        if_node = subgraph.node[i_if]
                                        # Create 'Squeeze' node.
                                        squeeze_node = onnx.helper.make_node(
                                            op_type='Squeeze',
                                            inputs=[
                                                *list(shape_node.input),
                                                # For ONNX opset >= 13, axes should be an input instead of an attribute.
                                                gather_node.input[1]  # Use 'indices' input of 'Gather'
                                            ],
                                            outputs=if_node.output,
                                            name=shape_node.name.replace('Shape', 'Squeeze')
                                        )
                                        # Replace 'Shape', 'Gather', 'Equal', 'If' with 'Squeeze'.
                                        subgraph.node.insert(i_shape, squeeze_node)
                                        subgraph.node.remove(shape_node)
                                        subgraph.node.remove(gather_node)
                                        subgraph.node.remove(equal_node)
                                        subgraph.node.remove(if_node)
                                        _verbose(
                                            f'| fold nodes: [\'{shape_node.name}\', \'{gather_node.name}\', '
                                            f'\'{equal_node.name}\', \'{if_node.name}\'] -> \'{squeeze_node.name}\'')
                                        break
                                    i_if += 1
                                else:
                                    break
                            i_equal += 1
                        else:
                            break
                    i_gather += 1
                else:
                    break
            i_shape += 1

    _graph_fold_back_to_squeeze_recursive(graph)


def graph_extract_conditioner_projections(
        graph: GraphProto,
        op_type: str,
        weight_pattern: str,
        alias_prefix: str
):
    """
    Extract conditioner projection nodes out of the backbone wrapped by diffusion.
    These nodes only need to be calculated once before entering the main denoising loop,
    and can be reused inside the loop. This optimizes the performance of ONNX inference.

    :param graph: graph to perform the operation on
    :param op_type: the ONNX operator type of the conditioner projections (usually 'Conv' or 'Gemm')
    :param weight_pattern: a regular expression as pattern of the conditioner projection weight keys
    :param alias_prefix: add prefixes to the outputs of extracted projection nodes
    """
    node_dict: Dict[str, Tuple[str, NodeProto]] = {}  # key: pattern match, value: (alias, node)

    def _extract_conv_nodes_recursive(subgraph: GraphProto):
        to_be_removed = []
        for sub_node in subgraph.node:
            if sub_node.op_type == 'If':
                for attr in sub_node.attribute:
                    branch = onnx.helper.get_attribute_value(attr)
                    _extract_conv_nodes_recursive(branch)
            elif sub_node.op_type == 'Loop':
                for attr in sub_node.attribute:
                    if attr.name == 'body':
                        body = onnx.helper.get_attribute_value(attr)
                        _extract_conv_nodes_recursive(body)
            elif sub_node.op_type == op_type and re.match(weight_pattern, sub_node.input[1]):
                # Found node to extract
                cached = node_dict.get(sub_node.input[1])
                if cached is None:
                    out_alias = f'{alias_prefix}.{len(node_dict)}'
                    node_dict[sub_node.input[1]] = (out_alias, sub_node)
                else:
                    out_alias = cached[0]
                out = sub_node.output[0]
                # Search for nodes downstream the extracted node and match them to the renamed output.
                for dep_node in subgraph.node:
                    for dep_idx, dep_input in enumerate(dep_node.input):
                        if dep_input == out:
                            dep_node.input.remove(out)
                            dep_node.input.insert(dep_idx, out_alias)
                # Add the node to the remove list.
                to_be_removed.append(sub_node)
        [subgraph.node.remove(_n) for _n in to_be_removed]

    toplevel_entry_node_idx = toplevel_entry_node = None
    # Find the **last** If node in toplevel graph
    for i, n in enumerate(graph.node):
        if n.op_type == 'If':
            toplevel_entry_node_idx = i
            toplevel_entry_node = n
    # If not found, find the **last** Loop node in toplevel graph
    if toplevel_entry_node is None:
        for i, n in enumerate(graph.node):
            if n.op_type == 'Loop':
                toplevel_entry_node_idx = i
                toplevel_entry_node = n
    if toplevel_entry_node is not None:
        for a in toplevel_entry_node.attribute:
            # Apply to all sub-graphs
            v = onnx.helper.get_attribute_value(a)
            if isinstance(v, GraphProto):
                _extract_conv_nodes_recursive(v)

        # Insert the extracted nodes before the first 'If' node which carries the main denoising loop.
        for key in reversed(node_dict):
            alias, node = node_dict[key]
            # Rename output of the node.
            out_name = node.output[0]
            node.output.remove(node.output[0])
            node.output.insert(0, alias)
            # Insert node into the main graph.
            graph.node.insert(toplevel_entry_node_idx, node)
            # Rename value info of the output.
            for v in graph.value_info:
                if v.name == out_name:
                    v.name = alias
                    break
            _verbose(f'| extract conditioner projection: \'{node.name}\'')


def graph_remove_unused_values(graph: GraphProto):
    used_values = set()

    def _record_usage_recursive(subgraph: GraphProto):
        for node in subgraph.node:
            # For 'If' and 'Loop' nodes, do recording recursively
            if node.op_type == 'If':
                for attr in node.attribute:
                    branch = onnx.helper.get_attribute_value(attr)
                    _record_usage_recursive(branch)
            elif node.op_type == 'Loop':
                for attr in node.attribute:
                    if attr.name == 'body':
                        body = onnx.helper.get_attribute_value(attr)
                        _record_usage_recursive(body)
            # For each node, record its inputs and outputs
            for io_list in [node.input, node.output]:
                for io_value in io_list:
                    used_values.add(io_value)

    def _clean_unused_recursively(subgraph):
        # Do cleaning in sub-graphs recursively.
        for node in subgraph.node:
            if node.op_type == 'If':
                for attr in node.attribute:
                    branch = onnx.helper.get_attribute_value(attr)
                    _clean_unused_recursively(branch)
            elif node.op_type == 'Loop':
                for attr in node.attribute:
                    if attr.name == 'body':
                        body = onnx.helper.get_attribute_value(attr)
                        _clean_unused_recursively(body)

        # Do cleaning in current graph.
        i = 0
        while i < len(subgraph.initializer):
            name = subgraph.initializer[i].name
            if name not in used_values:
                subgraph.initializer.pop(i)
                _verbose(f'| remove unused initializer: {name}')
            else:
                i += 1
        i = 0
        while i < len(subgraph.value_info):
            name = subgraph.value_info[i].name
            if name not in used_values:
                subgraph.value_info.pop(i)
                _verbose(f'| remove unused value info: {name}')
            else:
                i += 1

    _record_usage_recursive(graph)
    _clean_unused_recursively(graph)