CantusSVS-hf / inference /ds_variance.py
liampond
Clean deploy snapshot
c42fe7e
import copy
import json
import tqdm
import pathlib
from collections import OrderedDict
import librosa
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy import interpolate
from typing import List, Tuple
from basics.base_svs_infer import BaseSVSInfer
from modules.fastspeech.tts_modules import (
LengthRegulator, RhythmRegulator,
mel2ph_to_dur
)
from modules.fastspeech.param_adaptor import VARIANCE_CHECKLIST
from modules.toplevel import DiffSingerVariance
from utils import load_ckpt
from utils.hparams import hparams
from utils.infer_utils import resample_align_curve
from utils.phoneme_utils import build_phoneme_list
from utils.pitch_utils import interp_f0
from utils.text_encoder import TokenTextEncoder
class DiffSingerVarianceInfer(BaseSVSInfer):
def __init__(
self, device=None, ckpt_steps=None,
predictions: set = None
):
super().__init__(device=device)
self.ph_encoder = TokenTextEncoder(vocab_list=build_phoneme_list())
if hparams['use_spk_id']:
with open(pathlib.Path(hparams['work_dir']) / 'spk_map.json', 'r', encoding='utf8') as f:
self.spk_map = json.load(f)
assert isinstance(self.spk_map, dict) and len(self.spk_map) > 0, 'Invalid or empty speaker map!'
assert len(self.spk_map) == len(set(self.spk_map.values())), 'Duplicate speaker id in speaker map!'
self.model: DiffSingerVariance = self.build_model(ckpt_steps=ckpt_steps)
self.lr = LengthRegulator()
self.rr = RhythmRegulator()
smooth_kernel_size = round(hparams['midi_smooth_width'] / self.timestep)
self.smooth = nn.Conv1d(
in_channels=1,
out_channels=1,
kernel_size=smooth_kernel_size,
bias=False,
padding='same',
padding_mode='replicate'
).eval().to(self.device)
smooth_kernel = torch.sin(torch.from_numpy(
np.linspace(0, 1, smooth_kernel_size).astype(np.float32) * np.pi
).to(self.device))
smooth_kernel /= smooth_kernel.sum()
self.smooth.weight.data = smooth_kernel[None, None]
glide_types = hparams.get('glide_types', [])
assert 'none' not in glide_types, 'Type name \'none\' is reserved and should not appear in glide_types.'
self.glide_map = {
'none': 0,
**{
typename: idx + 1
for idx, typename in enumerate(glide_types)
}
}
self.auto_completion_mode = len(predictions) == 0
self.global_predict_dur = 'dur' in predictions and hparams['predict_dur']
self.global_predict_pitch = 'pitch' in predictions and hparams['predict_pitch']
self.variance_prediction_set = predictions.intersection(VARIANCE_CHECKLIST)
self.global_predict_variances = len(self.variance_prediction_set) > 0
def build_model(self, ckpt_steps=None):
model = DiffSingerVariance(
vocab_size=len(self.ph_encoder)
).eval().to(self.device)
load_ckpt(model, hparams['work_dir'], ckpt_steps=ckpt_steps,
prefix_in_ckpt='model', strict=True, device=self.device)
return model
@torch.no_grad()
def preprocess_input(
self, param, idx=0,
load_dur: bool = False,
load_pitch: bool = False
):
"""
:param param: one segment in the .ds file
:param idx: index of the segment
:param load_dur: whether ph_dur is loaded
:param load_pitch: whether pitch is loaded
:return: batch of the model inputs
"""
batch = {}
summary = OrderedDict()
txt_tokens = torch.LongTensor([self.ph_encoder.encode(param['ph_seq'].split())]).to(self.device) # [B=1, T_ph]
T_ph = txt_tokens.shape[1]
batch['tokens'] = txt_tokens
ph_num = torch.from_numpy(np.array([param['ph_num'].split()], np.int64)).to(self.device) # [B=1, T_w]
ph2word = self.lr(ph_num) # => [B=1, T_ph]
T_w = int(ph2word.max())
batch['ph2word'] = ph2word
note_midi = np.array(
[(librosa.note_to_midi(n, round_midi=False) if n != 'rest' else -1) for n in param['note_seq'].split()],
dtype=np.float32
)
note_rest = note_midi < 0
if np.all(note_rest):
# All rests, fill with constants
note_midi = np.full_like(note_midi, fill_value=60.)
else:
# Interpolate rest values
interp_func = interpolate.interp1d(
np.where(~note_rest)[0], note_midi[~note_rest],
kind='nearest', fill_value='extrapolate'
)
note_midi[note_rest] = interp_func(np.where(note_rest)[0])
note_midi = torch.from_numpy(note_midi).to(self.device)[None] # [B=1, T_n]
note_rest = torch.from_numpy(note_rest).to(self.device)[None] # [B=1, T_n]
T_n = note_midi.shape[1]
note_dur_sec = torch.from_numpy(np.array([param['note_dur'].split()], np.float32)).to(self.device) # [B=1, T_n]
note_acc = torch.round(torch.cumsum(note_dur_sec, dim=1) / self.timestep + 0.5).long()
note_dur = torch.diff(note_acc, dim=1, prepend=note_acc.new_zeros(1, 1))
mel2note = self.lr(note_dur) # [B=1, T_s]
T_s = mel2note.shape[1]
summary['words'] = T_w
summary['notes'] = T_n
summary['tokens'] = T_ph
summary['frames'] = T_s
summary['seconds'] = '%.2f' % (T_s * self.timestep)
if hparams['use_spk_id']:
ph_spk_mix_id, ph_spk_mix_value = self.load_speaker_mix(
param_src=param, summary_dst=summary, mix_mode='token', mix_length=T_ph
)
spk_mix_id, spk_mix_value = self.load_speaker_mix(
param_src=param, summary_dst=summary, mix_mode='frame', mix_length=T_s
)
batch['ph_spk_mix_id'] = ph_spk_mix_id
batch['ph_spk_mix_value'] = ph_spk_mix_value
batch['spk_mix_id'] = spk_mix_id
batch['spk_mix_value'] = spk_mix_value
if load_dur:
# Get mel2ph if ph_dur is needed
ph_dur_sec = torch.from_numpy(
np.array([param['ph_dur'].split()], np.float32)
).to(self.device) # [B=1, T_ph]
ph_acc = torch.round(torch.cumsum(ph_dur_sec, dim=1) / self.timestep + 0.5).long()
ph_dur = torch.diff(ph_acc, dim=1, prepend=ph_acc.new_zeros(1, 1))
mel2ph = self.lr(ph_dur, txt_tokens == 0)
if mel2ph.shape[1] != T_s: # Align phones with notes
mel2ph = F.pad(mel2ph, [0, T_s - mel2ph.shape[1]], value=mel2ph[0, -1])
ph_dur = mel2ph_to_dur(mel2ph, T_ph)
# Get word_dur from ph_dur and ph_num
word_dur = note_dur.new_zeros(1, T_w + 1).scatter_add(
1, ph2word, ph_dur
)[:, 1:] # => [B=1, T_w]
else:
ph_dur = None
mel2ph = None
# Get word_dur from note_dur and note_slur
is_slur = torch.BoolTensor([[int(s) for s in param['note_slur'].split()]]).to(self.device) # [B=1, T_n]
note2word = torch.cumsum(~is_slur, dim=1) # [B=1, T_n]
word_dur = note_dur.new_zeros(1, T_w + 1).scatter_add(
1, note2word, note_dur
)[:, 1:] # => [B=1, T_w]
batch['ph_dur'] = ph_dur
batch['mel2ph'] = mel2ph
mel2word = self.lr(word_dur) # [B=1, T_s]
if mel2word.shape[1] != T_s: # Align words with notes
mel2word = F.pad(mel2word, [0, T_s - mel2word.shape[1]], value=mel2word[0, -1])
word_dur = mel2ph_to_dur(mel2word, T_w)
batch['word_dur'] = word_dur
batch['note_midi'] = note_midi
batch['note_dur'] = note_dur
batch['note_rest'] = note_rest
if hparams.get('use_glide_embed', False) and param.get('note_glide') is not None:
batch['note_glide'] = torch.LongTensor(
[[self.glide_map.get(x, 0) for x in param['note_glide'].split()]]
).to(self.device)
else:
batch['note_glide'] = torch.zeros(1, T_n, dtype=torch.long, device=self.device)
batch['mel2note'] = mel2note
# Calculate and smoothen the frame-level MIDI pitch, which is a step function curve
frame_midi_pitch = torch.gather(
F.pad(note_midi, [1, 0]), 1, mel2note
) # => frame-level MIDI pitch, [B=1, T_s]
base_pitch = self.smooth(frame_midi_pitch)
batch['base_pitch'] = base_pitch
if ph_dur is not None:
# Phone durations are available, calculate phoneme-level MIDI.
mel2pdur = torch.gather(F.pad(ph_dur, [1, 0], value=1), 1, mel2ph) # frame-level phone duration
ph_midi = frame_midi_pitch.new_zeros(1, T_ph + 1).scatter_add(
1, mel2ph, frame_midi_pitch / mel2pdur
)[:, 1:]
else:
# Phone durations are not available, calculate word-level MIDI instead.
mel2wdur = torch.gather(F.pad(word_dur, [1, 0], value=1), 1, mel2word)
w_midi = frame_midi_pitch.new_zeros(1, T_w + 1).scatter_add(
1, mel2word, frame_midi_pitch / mel2wdur
)[:, 1:]
# Convert word-level MIDI to phoneme-level MIDI
ph_midi = torch.gather(F.pad(w_midi, [1, 0]), 1, ph2word)
ph_midi = ph_midi.round().long()
batch['midi'] = ph_midi
if load_pitch:
f0 = resample_align_curve(
np.array(param['f0_seq'].split(), np.float32),
original_timestep=float(param['f0_timestep']),
target_timestep=self.timestep,
align_length=T_s
)
batch['pitch'] = torch.from_numpy(
librosa.hz_to_midi(interp_f0(f0)[0]).astype(np.float32)
).to(self.device)[None]
if self.model.predict_dur:
if load_dur:
summary['ph_dur'] = 'manual'
elif self.auto_completion_mode or self.global_predict_dur:
summary['ph_dur'] = 'auto'
else:
summary['ph_dur'] = 'ignored'
if self.model.predict_pitch:
if load_pitch:
summary['pitch'] = 'manual'
elif self.auto_completion_mode or self.global_predict_pitch:
summary['pitch'] = 'auto'
# Load expressiveness
expr = param.get('expr', 1.)
if isinstance(expr, (int, float, bool)):
summary['expr'] = f'static({expr:.3f})'
batch['expr'] = torch.FloatTensor([expr]).to(self.device)[:, None] # [B=1, T=1]
else:
summary['expr'] = 'dynamic'
expr = resample_align_curve(
np.array(expr.split(), np.float32),
original_timestep=float(param['expr_timestep']),
target_timestep=self.timestep,
align_length=T_s
)
batch['expr'] = torch.from_numpy(expr.astype(np.float32)).to(self.device)[None]
else:
summary['pitch'] = 'ignored'
if self.model.predict_variances:
for v_name in self.model.variance_prediction_list:
if self.auto_completion_mode and param.get(v_name) is None or v_name in self.variance_prediction_set:
summary[v_name] = 'auto'
else:
summary[v_name] = 'ignored'
print(f'[{idx}]\t' + ', '.join(f'{k}: {v}' for k, v in summary.items()))
return batch
@torch.no_grad()
def forward_model(self, sample):
txt_tokens = sample['tokens']
midi = sample['midi']
ph2word = sample['ph2word']
word_dur = sample['word_dur']
ph_dur = sample['ph_dur']
mel2ph = sample['mel2ph']
note_midi = sample['note_midi']
note_rest = sample['note_rest']
note_dur = sample['note_dur']
note_glide = sample['note_glide']
mel2note = sample['mel2note']
base_pitch = sample['base_pitch']
expr = sample.get('expr')
pitch = sample.get('pitch')
if hparams['use_spk_id']:
ph_spk_mix_id = sample['ph_spk_mix_id']
ph_spk_mix_value = sample['ph_spk_mix_value']
spk_mix_id = sample['spk_mix_id']
spk_mix_value = sample['spk_mix_value']
ph_spk_mix_embed = torch.sum(
self.model.spk_embed(ph_spk_mix_id) * ph_spk_mix_value.unsqueeze(3), # => [B, T_ph, N, H]
dim=2, keepdim=False
) # => [B, T_ph, H]
spk_mix_embed = torch.sum(
self.model.spk_embed(spk_mix_id) * spk_mix_value.unsqueeze(3), # => [B, T_s, N, H]
dim=2, keepdim=False
) # [B, T_s, H]
else:
ph_spk_mix_embed = spk_mix_embed = None
dur_pred, pitch_pred, variance_pred = self.model(
txt_tokens, midi=midi, ph2word=ph2word, word_dur=word_dur, ph_dur=ph_dur, mel2ph=mel2ph,
note_midi=note_midi, note_rest=note_rest, note_dur=note_dur, note_glide=note_glide, mel2note=mel2note,
base_pitch=base_pitch, pitch=pitch, pitch_expr=expr,
ph_spk_mix_embed=ph_spk_mix_embed, spk_mix_embed=spk_mix_embed,
infer=True
)
if dur_pred is not None:
dur_pred = self.rr(dur_pred, ph2word, word_dur)
if pitch_pred is not None:
pitch_pred = base_pitch + pitch_pred
return dur_pred, pitch_pred, variance_pred
def infer_once(self, param):
batch = self.preprocess_input(param)
dur_pred, pitch_pred, variance_pred = self.forward_model(batch)
if dur_pred is not None:
dur_pred = dur_pred[0].cpu().numpy()
if pitch_pred is not None:
pitch_pred = pitch_pred[0].cpu().numpy()
f0_pred = librosa.midi_to_hz(pitch_pred)
else:
f0_pred = None
variance_pred = {
k: v[0].cpu().numpy()
for k, v in variance_pred.items()
}
return dur_pred, f0_pred, variance_pred
def run_inference(
self, params,
out_dir: pathlib.Path = None,
title: str = None,
num_runs: int = 1,
seed: int = -1
):
batches = []
predictor_flags: List[Tuple[bool, bool, bool]] = []
for i, param in enumerate(params):
param: dict
if self.auto_completion_mode:
flag = (
self.model.fs2.predict_dur and param.get('ph_dur') is None,
self.model.predict_pitch and param.get('f0_seq') is None,
self.model.predict_variances and any(
param.get(v_name) is None for v_name in self.model.variance_prediction_list
)
)
else:
predict_variances = self.model.predict_variances and self.global_predict_variances
predict_pitch = self.model.predict_pitch and (
self.global_predict_pitch or (param.get('f0_seq') is None and predict_variances)
)
predict_dur = self.model.predict_dur and (
self.global_predict_dur or (param.get('ph_dur') is None and (predict_pitch or predict_variances))
)
flag = (predict_dur, predict_pitch, predict_variances)
predictor_flags.append(flag)
batches.append(self.preprocess_input(
param, idx=i,
load_dur=not flag[0] and (flag[1] or flag[2]),
load_pitch=not flag[1] and flag[2]
))
out_dir.mkdir(parents=True, exist_ok=True)
for i in range(num_runs):
results = []
for param, flag, batch in tqdm.tqdm(
zip(params, predictor_flags, batches), desc='infer segments', total=len(params)
):
if 'seed' in param:
torch.manual_seed(param["seed"] & 0xffff_ffff)
torch.cuda.manual_seed_all(param["seed"] & 0xffff_ffff)
elif seed >= 0:
torch.manual_seed(seed & 0xffff_ffff)
torch.cuda.manual_seed_all(seed & 0xffff_ffff)
param_copy = copy.deepcopy(param)
flag_saved = (
self.model.fs2.predict_dur,
self.model.predict_pitch,
self.model.predict_variances
)
(
self.model.fs2.predict_dur,
self.model.predict_pitch,
self.model.predict_variances
) = flag
dur_pred, pitch_pred, variance_pred = self.forward_model(batch)
(
self.model.fs2.predict_dur,
self.model.predict_pitch,
self.model.predict_variances
) = flag_saved
if dur_pred is not None and (self.auto_completion_mode or self.global_predict_dur):
dur_pred = dur_pred[0].cpu().numpy()
param_copy['ph_dur'] = ' '.join(str(round(dur, 6)) for dur in (dur_pred * self.timestep).tolist())
if pitch_pred is not None and (self.auto_completion_mode or self.global_predict_pitch):
pitch_pred = pitch_pred[0].cpu().numpy()
f0_pred = librosa.midi_to_hz(pitch_pred)
param_copy['f0_seq'] = ' '.join([str(round(freq, 1)) for freq in f0_pred.tolist()])
param_copy['f0_timestep'] = str(self.timestep)
variance_pred = {
k: v[0].cpu().numpy()
for k, v in variance_pred.items()
if (self.auto_completion_mode and param.get(k) is None) or k in self.variance_prediction_set
}
for v_name, v_pred in variance_pred.items():
param_copy[v_name] = ' '.join([str(round(v, 4)) for v in v_pred.tolist()])
param_copy[f'{v_name}_timestep'] = str(self.timestep)
# Restore ph_spk_mix and spk_mix
if 'ph_spk_mix' in param_copy and 'spk_mix' in param_copy:
if 'ph_spk_mix_backup' in param_copy:
if param_copy['ph_spk_mix_backup'] is None:
del param_copy['ph_spk_mix']
else:
param_copy['ph_spk_mix'] = param_copy['ph_spk_mix_backup']
del param['ph_spk_mix_backup']
if 'spk_mix_backup' in param_copy:
if param_copy['ph_spk_mix_backup'] is None:
del param_copy['spk_mix']
else:
param_copy['spk_mix'] = param_copy['spk_mix_backup']
del param['spk_mix_backup']
results.append(param_copy)
if num_runs > 1:
filename = f'{title}-{str(i).zfill(3)}.ds'
else:
filename = f'{title}.ds'
save_path = out_dir / filename
with open(save_path, 'w', encoding='utf8') as f:
print(f'| save params: {save_path}')
json.dump(results, f, ensure_ascii=False, indent=2)