Spaces:
Sleeping
Sleeping
File size: 19,636 Bytes
c42fe7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import copy
import json
import tqdm
import pathlib
from collections import OrderedDict
import librosa
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy import interpolate
from typing import List, Tuple
from basics.base_svs_infer import BaseSVSInfer
from modules.fastspeech.tts_modules import (
LengthRegulator, RhythmRegulator,
mel2ph_to_dur
)
from modules.fastspeech.param_adaptor import VARIANCE_CHECKLIST
from modules.toplevel import DiffSingerVariance
from utils import load_ckpt
from utils.hparams import hparams
from utils.infer_utils import resample_align_curve
from utils.phoneme_utils import build_phoneme_list
from utils.pitch_utils import interp_f0
from utils.text_encoder import TokenTextEncoder
class DiffSingerVarianceInfer(BaseSVSInfer):
def __init__(
self, device=None, ckpt_steps=None,
predictions: set = None
):
super().__init__(device=device)
self.ph_encoder = TokenTextEncoder(vocab_list=build_phoneme_list())
if hparams['use_spk_id']:
with open(pathlib.Path(hparams['work_dir']) / 'spk_map.json', 'r', encoding='utf8') as f:
self.spk_map = json.load(f)
assert isinstance(self.spk_map, dict) and len(self.spk_map) > 0, 'Invalid or empty speaker map!'
assert len(self.spk_map) == len(set(self.spk_map.values())), 'Duplicate speaker id in speaker map!'
self.model: DiffSingerVariance = self.build_model(ckpt_steps=ckpt_steps)
self.lr = LengthRegulator()
self.rr = RhythmRegulator()
smooth_kernel_size = round(hparams['midi_smooth_width'] / self.timestep)
self.smooth = nn.Conv1d(
in_channels=1,
out_channels=1,
kernel_size=smooth_kernel_size,
bias=False,
padding='same',
padding_mode='replicate'
).eval().to(self.device)
smooth_kernel = torch.sin(torch.from_numpy(
np.linspace(0, 1, smooth_kernel_size).astype(np.float32) * np.pi
).to(self.device))
smooth_kernel /= smooth_kernel.sum()
self.smooth.weight.data = smooth_kernel[None, None]
glide_types = hparams.get('glide_types', [])
assert 'none' not in glide_types, 'Type name \'none\' is reserved and should not appear in glide_types.'
self.glide_map = {
'none': 0,
**{
typename: idx + 1
for idx, typename in enumerate(glide_types)
}
}
self.auto_completion_mode = len(predictions) == 0
self.global_predict_dur = 'dur' in predictions and hparams['predict_dur']
self.global_predict_pitch = 'pitch' in predictions and hparams['predict_pitch']
self.variance_prediction_set = predictions.intersection(VARIANCE_CHECKLIST)
self.global_predict_variances = len(self.variance_prediction_set) > 0
def build_model(self, ckpt_steps=None):
model = DiffSingerVariance(
vocab_size=len(self.ph_encoder)
).eval().to(self.device)
load_ckpt(model, hparams['work_dir'], ckpt_steps=ckpt_steps,
prefix_in_ckpt='model', strict=True, device=self.device)
return model
@torch.no_grad()
def preprocess_input(
self, param, idx=0,
load_dur: bool = False,
load_pitch: bool = False
):
"""
:param param: one segment in the .ds file
:param idx: index of the segment
:param load_dur: whether ph_dur is loaded
:param load_pitch: whether pitch is loaded
:return: batch of the model inputs
"""
batch = {}
summary = OrderedDict()
txt_tokens = torch.LongTensor([self.ph_encoder.encode(param['ph_seq'].split())]).to(self.device) # [B=1, T_ph]
T_ph = txt_tokens.shape[1]
batch['tokens'] = txt_tokens
ph_num = torch.from_numpy(np.array([param['ph_num'].split()], np.int64)).to(self.device) # [B=1, T_w]
ph2word = self.lr(ph_num) # => [B=1, T_ph]
T_w = int(ph2word.max())
batch['ph2word'] = ph2word
note_midi = np.array(
[(librosa.note_to_midi(n, round_midi=False) if n != 'rest' else -1) for n in param['note_seq'].split()],
dtype=np.float32
)
note_rest = note_midi < 0
if np.all(note_rest):
# All rests, fill with constants
note_midi = np.full_like(note_midi, fill_value=60.)
else:
# Interpolate rest values
interp_func = interpolate.interp1d(
np.where(~note_rest)[0], note_midi[~note_rest],
kind='nearest', fill_value='extrapolate'
)
note_midi[note_rest] = interp_func(np.where(note_rest)[0])
note_midi = torch.from_numpy(note_midi).to(self.device)[None] # [B=1, T_n]
note_rest = torch.from_numpy(note_rest).to(self.device)[None] # [B=1, T_n]
T_n = note_midi.shape[1]
note_dur_sec = torch.from_numpy(np.array([param['note_dur'].split()], np.float32)).to(self.device) # [B=1, T_n]
note_acc = torch.round(torch.cumsum(note_dur_sec, dim=1) / self.timestep + 0.5).long()
note_dur = torch.diff(note_acc, dim=1, prepend=note_acc.new_zeros(1, 1))
mel2note = self.lr(note_dur) # [B=1, T_s]
T_s = mel2note.shape[1]
summary['words'] = T_w
summary['notes'] = T_n
summary['tokens'] = T_ph
summary['frames'] = T_s
summary['seconds'] = '%.2f' % (T_s * self.timestep)
if hparams['use_spk_id']:
ph_spk_mix_id, ph_spk_mix_value = self.load_speaker_mix(
param_src=param, summary_dst=summary, mix_mode='token', mix_length=T_ph
)
spk_mix_id, spk_mix_value = self.load_speaker_mix(
param_src=param, summary_dst=summary, mix_mode='frame', mix_length=T_s
)
batch['ph_spk_mix_id'] = ph_spk_mix_id
batch['ph_spk_mix_value'] = ph_spk_mix_value
batch['spk_mix_id'] = spk_mix_id
batch['spk_mix_value'] = spk_mix_value
if load_dur:
# Get mel2ph if ph_dur is needed
ph_dur_sec = torch.from_numpy(
np.array([param['ph_dur'].split()], np.float32)
).to(self.device) # [B=1, T_ph]
ph_acc = torch.round(torch.cumsum(ph_dur_sec, dim=1) / self.timestep + 0.5).long()
ph_dur = torch.diff(ph_acc, dim=1, prepend=ph_acc.new_zeros(1, 1))
mel2ph = self.lr(ph_dur, txt_tokens == 0)
if mel2ph.shape[1] != T_s: # Align phones with notes
mel2ph = F.pad(mel2ph, [0, T_s - mel2ph.shape[1]], value=mel2ph[0, -1])
ph_dur = mel2ph_to_dur(mel2ph, T_ph)
# Get word_dur from ph_dur and ph_num
word_dur = note_dur.new_zeros(1, T_w + 1).scatter_add(
1, ph2word, ph_dur
)[:, 1:] # => [B=1, T_w]
else:
ph_dur = None
mel2ph = None
# Get word_dur from note_dur and note_slur
is_slur = torch.BoolTensor([[int(s) for s in param['note_slur'].split()]]).to(self.device) # [B=1, T_n]
note2word = torch.cumsum(~is_slur, dim=1) # [B=1, T_n]
word_dur = note_dur.new_zeros(1, T_w + 1).scatter_add(
1, note2word, note_dur
)[:, 1:] # => [B=1, T_w]
batch['ph_dur'] = ph_dur
batch['mel2ph'] = mel2ph
mel2word = self.lr(word_dur) # [B=1, T_s]
if mel2word.shape[1] != T_s: # Align words with notes
mel2word = F.pad(mel2word, [0, T_s - mel2word.shape[1]], value=mel2word[0, -1])
word_dur = mel2ph_to_dur(mel2word, T_w)
batch['word_dur'] = word_dur
batch['note_midi'] = note_midi
batch['note_dur'] = note_dur
batch['note_rest'] = note_rest
if hparams.get('use_glide_embed', False) and param.get('note_glide') is not None:
batch['note_glide'] = torch.LongTensor(
[[self.glide_map.get(x, 0) for x in param['note_glide'].split()]]
).to(self.device)
else:
batch['note_glide'] = torch.zeros(1, T_n, dtype=torch.long, device=self.device)
batch['mel2note'] = mel2note
# Calculate and smoothen the frame-level MIDI pitch, which is a step function curve
frame_midi_pitch = torch.gather(
F.pad(note_midi, [1, 0]), 1, mel2note
) # => frame-level MIDI pitch, [B=1, T_s]
base_pitch = self.smooth(frame_midi_pitch)
batch['base_pitch'] = base_pitch
if ph_dur is not None:
# Phone durations are available, calculate phoneme-level MIDI.
mel2pdur = torch.gather(F.pad(ph_dur, [1, 0], value=1), 1, mel2ph) # frame-level phone duration
ph_midi = frame_midi_pitch.new_zeros(1, T_ph + 1).scatter_add(
1, mel2ph, frame_midi_pitch / mel2pdur
)[:, 1:]
else:
# Phone durations are not available, calculate word-level MIDI instead.
mel2wdur = torch.gather(F.pad(word_dur, [1, 0], value=1), 1, mel2word)
w_midi = frame_midi_pitch.new_zeros(1, T_w + 1).scatter_add(
1, mel2word, frame_midi_pitch / mel2wdur
)[:, 1:]
# Convert word-level MIDI to phoneme-level MIDI
ph_midi = torch.gather(F.pad(w_midi, [1, 0]), 1, ph2word)
ph_midi = ph_midi.round().long()
batch['midi'] = ph_midi
if load_pitch:
f0 = resample_align_curve(
np.array(param['f0_seq'].split(), np.float32),
original_timestep=float(param['f0_timestep']),
target_timestep=self.timestep,
align_length=T_s
)
batch['pitch'] = torch.from_numpy(
librosa.hz_to_midi(interp_f0(f0)[0]).astype(np.float32)
).to(self.device)[None]
if self.model.predict_dur:
if load_dur:
summary['ph_dur'] = 'manual'
elif self.auto_completion_mode or self.global_predict_dur:
summary['ph_dur'] = 'auto'
else:
summary['ph_dur'] = 'ignored'
if self.model.predict_pitch:
if load_pitch:
summary['pitch'] = 'manual'
elif self.auto_completion_mode or self.global_predict_pitch:
summary['pitch'] = 'auto'
# Load expressiveness
expr = param.get('expr', 1.)
if isinstance(expr, (int, float, bool)):
summary['expr'] = f'static({expr:.3f})'
batch['expr'] = torch.FloatTensor([expr]).to(self.device)[:, None] # [B=1, T=1]
else:
summary['expr'] = 'dynamic'
expr = resample_align_curve(
np.array(expr.split(), np.float32),
original_timestep=float(param['expr_timestep']),
target_timestep=self.timestep,
align_length=T_s
)
batch['expr'] = torch.from_numpy(expr.astype(np.float32)).to(self.device)[None]
else:
summary['pitch'] = 'ignored'
if self.model.predict_variances:
for v_name in self.model.variance_prediction_list:
if self.auto_completion_mode and param.get(v_name) is None or v_name in self.variance_prediction_set:
summary[v_name] = 'auto'
else:
summary[v_name] = 'ignored'
print(f'[{idx}]\t' + ', '.join(f'{k}: {v}' for k, v in summary.items()))
return batch
@torch.no_grad()
def forward_model(self, sample):
txt_tokens = sample['tokens']
midi = sample['midi']
ph2word = sample['ph2word']
word_dur = sample['word_dur']
ph_dur = sample['ph_dur']
mel2ph = sample['mel2ph']
note_midi = sample['note_midi']
note_rest = sample['note_rest']
note_dur = sample['note_dur']
note_glide = sample['note_glide']
mel2note = sample['mel2note']
base_pitch = sample['base_pitch']
expr = sample.get('expr')
pitch = sample.get('pitch')
if hparams['use_spk_id']:
ph_spk_mix_id = sample['ph_spk_mix_id']
ph_spk_mix_value = sample['ph_spk_mix_value']
spk_mix_id = sample['spk_mix_id']
spk_mix_value = sample['spk_mix_value']
ph_spk_mix_embed = torch.sum(
self.model.spk_embed(ph_spk_mix_id) * ph_spk_mix_value.unsqueeze(3), # => [B, T_ph, N, H]
dim=2, keepdim=False
) # => [B, T_ph, H]
spk_mix_embed = torch.sum(
self.model.spk_embed(spk_mix_id) * spk_mix_value.unsqueeze(3), # => [B, T_s, N, H]
dim=2, keepdim=False
) # [B, T_s, H]
else:
ph_spk_mix_embed = spk_mix_embed = None
dur_pred, pitch_pred, variance_pred = self.model(
txt_tokens, midi=midi, ph2word=ph2word, word_dur=word_dur, ph_dur=ph_dur, mel2ph=mel2ph,
note_midi=note_midi, note_rest=note_rest, note_dur=note_dur, note_glide=note_glide, mel2note=mel2note,
base_pitch=base_pitch, pitch=pitch, pitch_expr=expr,
ph_spk_mix_embed=ph_spk_mix_embed, spk_mix_embed=spk_mix_embed,
infer=True
)
if dur_pred is not None:
dur_pred = self.rr(dur_pred, ph2word, word_dur)
if pitch_pred is not None:
pitch_pred = base_pitch + pitch_pred
return dur_pred, pitch_pred, variance_pred
def infer_once(self, param):
batch = self.preprocess_input(param)
dur_pred, pitch_pred, variance_pred = self.forward_model(batch)
if dur_pred is not None:
dur_pred = dur_pred[0].cpu().numpy()
if pitch_pred is not None:
pitch_pred = pitch_pred[0].cpu().numpy()
f0_pred = librosa.midi_to_hz(pitch_pred)
else:
f0_pred = None
variance_pred = {
k: v[0].cpu().numpy()
for k, v in variance_pred.items()
}
return dur_pred, f0_pred, variance_pred
def run_inference(
self, params,
out_dir: pathlib.Path = None,
title: str = None,
num_runs: int = 1,
seed: int = -1
):
batches = []
predictor_flags: List[Tuple[bool, bool, bool]] = []
for i, param in enumerate(params):
param: dict
if self.auto_completion_mode:
flag = (
self.model.fs2.predict_dur and param.get('ph_dur') is None,
self.model.predict_pitch and param.get('f0_seq') is None,
self.model.predict_variances and any(
param.get(v_name) is None for v_name in self.model.variance_prediction_list
)
)
else:
predict_variances = self.model.predict_variances and self.global_predict_variances
predict_pitch = self.model.predict_pitch and (
self.global_predict_pitch or (param.get('f0_seq') is None and predict_variances)
)
predict_dur = self.model.predict_dur and (
self.global_predict_dur or (param.get('ph_dur') is None and (predict_pitch or predict_variances))
)
flag = (predict_dur, predict_pitch, predict_variances)
predictor_flags.append(flag)
batches.append(self.preprocess_input(
param, idx=i,
load_dur=not flag[0] and (flag[1] or flag[2]),
load_pitch=not flag[1] and flag[2]
))
out_dir.mkdir(parents=True, exist_ok=True)
for i in range(num_runs):
results = []
for param, flag, batch in tqdm.tqdm(
zip(params, predictor_flags, batches), desc='infer segments', total=len(params)
):
if 'seed' in param:
torch.manual_seed(param["seed"] & 0xffff_ffff)
torch.cuda.manual_seed_all(param["seed"] & 0xffff_ffff)
elif seed >= 0:
torch.manual_seed(seed & 0xffff_ffff)
torch.cuda.manual_seed_all(seed & 0xffff_ffff)
param_copy = copy.deepcopy(param)
flag_saved = (
self.model.fs2.predict_dur,
self.model.predict_pitch,
self.model.predict_variances
)
(
self.model.fs2.predict_dur,
self.model.predict_pitch,
self.model.predict_variances
) = flag
dur_pred, pitch_pred, variance_pred = self.forward_model(batch)
(
self.model.fs2.predict_dur,
self.model.predict_pitch,
self.model.predict_variances
) = flag_saved
if dur_pred is not None and (self.auto_completion_mode or self.global_predict_dur):
dur_pred = dur_pred[0].cpu().numpy()
param_copy['ph_dur'] = ' '.join(str(round(dur, 6)) for dur in (dur_pred * self.timestep).tolist())
if pitch_pred is not None and (self.auto_completion_mode or self.global_predict_pitch):
pitch_pred = pitch_pred[0].cpu().numpy()
f0_pred = librosa.midi_to_hz(pitch_pred)
param_copy['f0_seq'] = ' '.join([str(round(freq, 1)) for freq in f0_pred.tolist()])
param_copy['f0_timestep'] = str(self.timestep)
variance_pred = {
k: v[0].cpu().numpy()
for k, v in variance_pred.items()
if (self.auto_completion_mode and param.get(k) is None) or k in self.variance_prediction_set
}
for v_name, v_pred in variance_pred.items():
param_copy[v_name] = ' '.join([str(round(v, 4)) for v in v_pred.tolist()])
param_copy[f'{v_name}_timestep'] = str(self.timestep)
# Restore ph_spk_mix and spk_mix
if 'ph_spk_mix' in param_copy and 'spk_mix' in param_copy:
if 'ph_spk_mix_backup' in param_copy:
if param_copy['ph_spk_mix_backup'] is None:
del param_copy['ph_spk_mix']
else:
param_copy['ph_spk_mix'] = param_copy['ph_spk_mix_backup']
del param['ph_spk_mix_backup']
if 'spk_mix_backup' in param_copy:
if param_copy['ph_spk_mix_backup'] is None:
del param_copy['spk_mix']
else:
param_copy['spk_mix'] = param_copy['spk_mix_backup']
del param['spk_mix_backup']
results.append(param_copy)
if num_runs > 1:
filename = f'{title}-{str(i).zfill(3)}.ds'
else:
filename = f'{title}.ds'
save_path = out_dir / filename
with open(save_path, 'w', encoding='utf8') as f:
print(f'| save params: {save_path}')
json.dump(results, f, ensure_ascii=False, indent=2)
|