Spaces:
Sleeping
Sleeping
import json | |
import pathlib | |
import pickle | |
import random | |
import shutil | |
import warnings | |
from copy import deepcopy | |
import numpy as np | |
import torch | |
from tqdm import tqdm | |
from utils.hparams import hparams | |
from utils.indexed_datasets import IndexedDatasetBuilder | |
from utils.multiprocess_utils import chunked_multiprocess_run | |
from utils.phoneme_utils import build_phoneme_list, locate_dictionary | |
from utils.plot import distribution_to_figure | |
from utils.text_encoder import TokenTextEncoder | |
class BinarizationError(Exception): | |
pass | |
class BaseBinarizer: | |
""" | |
Base class for data processing. | |
1. *process* and *process_data_split*: | |
process entire data, generate the train-test split (support parallel processing); | |
2. *process_item*: | |
process singe piece of data; | |
3. *get_pitch*: | |
infer the pitch using some algorithm; | |
4. *get_align*: | |
get the alignment using 'mel2ph' format (see https://arxiv.org/abs/1905.09263). | |
5. phoneme encoder, voice encoder, etc. | |
Subclasses should define: | |
1. *load_metadata*: | |
how to read multiple datasets from files; | |
2. *train_item_names*, *valid_item_names*, *test_item_names*: | |
how to split the dataset; | |
3. load_ph_set: | |
the phoneme set. | |
""" | |
def __init__(self, data_dir=None, data_attrs=None): | |
if data_dir is None: | |
data_dir = hparams['raw_data_dir'] | |
if not isinstance(data_dir, list): | |
data_dir = [data_dir] | |
self.raw_data_dirs = [pathlib.Path(d) for d in data_dir] | |
self.binary_data_dir = pathlib.Path(hparams['binary_data_dir']) | |
self.data_attrs = [] if data_attrs is None else data_attrs | |
self.binarization_args = hparams['binarization_args'] | |
self.augmentation_args = hparams.get('augmentation_args', {}) | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.spk_map = None | |
self.spk_ids = hparams['spk_ids'] | |
self.speakers = hparams['speakers'] | |
self.build_spk_map() | |
self.items = {} | |
self.item_names: list = None | |
self._train_item_names: list = None | |
self._valid_item_names: list = None | |
self.phone_encoder = TokenTextEncoder(vocab_list=build_phoneme_list()) | |
self.timestep = hparams['hop_size'] / hparams['audio_sample_rate'] | |
def build_spk_map(self): | |
assert isinstance(self.speakers, list), 'Speakers must be a list' | |
assert len(self.speakers) == len(self.raw_data_dirs), \ | |
'Number of raw data dirs must equal number of speaker names!' | |
if len(self.spk_ids) == 0: | |
self.spk_ids = list(range(len(self.raw_data_dirs))) | |
else: | |
assert len(self.spk_ids) == len(self.raw_data_dirs), \ | |
'Length of explicitly given spk_ids must equal the number of raw datasets.' | |
assert max(self.spk_ids) < hparams['num_spk'], \ | |
f'Index in spk_id sequence {self.spk_ids} is out of range. All values should be smaller than num_spk.' | |
self.spk_map = {} | |
for spk_name, spk_id in zip(self.speakers, self.spk_ids): | |
if spk_name in self.spk_map and self.spk_map[spk_name] != spk_id: | |
raise ValueError(f'Invalid speaker ID assignment. Name \'{spk_name}\' is assigned ' | |
f'with different speaker IDs: {self.spk_map[spk_name]} and {spk_id}.') | |
self.spk_map[spk_name] = spk_id | |
print("| spk_map: ", self.spk_map) | |
def load_meta_data(self, raw_data_dir: pathlib.Path, ds_id, spk_id): | |
raise NotImplementedError() | |
def split_train_valid_set(self, item_names): | |
""" | |
Split the dataset into training set and validation set. | |
:return: train_item_names, valid_item_names | |
""" | |
prefixes = {str(pr): 1 for pr in hparams['test_prefixes']} | |
valid_item_names = {} | |
# Add prefixes that specified speaker index and matches exactly item name to test set | |
for prefix in deepcopy(prefixes): | |
if prefix in item_names: | |
valid_item_names[prefix] = 1 | |
prefixes.pop(prefix) | |
# Add prefixes that exactly matches item name without speaker id to test set | |
for prefix in deepcopy(prefixes): | |
matched = False | |
for name in item_names: | |
if name.split(':')[-1] == prefix: | |
valid_item_names[name] = 1 | |
matched = True | |
if matched: | |
prefixes.pop(prefix) | |
# Add names with one of the remaining prefixes to test set | |
for prefix in deepcopy(prefixes): | |
matched = False | |
for name in item_names: | |
if name.startswith(prefix): | |
valid_item_names[name] = 1 | |
matched = True | |
if matched: | |
prefixes.pop(prefix) | |
for prefix in deepcopy(prefixes): | |
matched = False | |
for name in item_names: | |
if name.split(':')[-1].startswith(prefix): | |
valid_item_names[name] = 1 | |
matched = True | |
if matched: | |
prefixes.pop(prefix) | |
if len(prefixes) != 0: | |
warnings.warn( | |
f'The following rules in test_prefixes have no matching names in the dataset: {", ".join(prefixes.keys())}', | |
category=UserWarning | |
) | |
warnings.filterwarnings('default') | |
valid_item_names = list(valid_item_names.keys()) | |
assert len(valid_item_names) > 0, 'Validation set is empty!' | |
train_item_names = [x for x in item_names if x not in set(valid_item_names)] | |
assert len(train_item_names) > 0, 'Training set is empty!' | |
return train_item_names, valid_item_names | |
def train_item_names(self): | |
return self._train_item_names | |
def valid_item_names(self): | |
return self._valid_item_names | |
def meta_data_iterator(self, prefix): | |
if prefix == 'train': | |
item_names = self.train_item_names | |
else: | |
item_names = self.valid_item_names | |
for item_name in item_names: | |
meta_data = self.items[item_name] | |
yield item_name, meta_data | |
def process(self): | |
# load each dataset | |
for ds_id, spk_id, data_dir in zip(range(len(self.raw_data_dirs)), self.spk_ids, self.raw_data_dirs): | |
self.load_meta_data(pathlib.Path(data_dir), ds_id=ds_id, spk_id=spk_id) | |
self.item_names = sorted(list(self.items.keys())) | |
self._train_item_names, self._valid_item_names = self.split_train_valid_set(self.item_names) | |
if self.binarization_args['shuffle']: | |
random.shuffle(self.item_names) | |
self.binary_data_dir.mkdir(parents=True, exist_ok=True) | |
# Copy spk_map and dictionary to binary data dir | |
spk_map_fn = self.binary_data_dir / 'spk_map.json' | |
with open(spk_map_fn, 'w', encoding='utf-8') as f: | |
json.dump(self.spk_map, f) | |
shutil.copy(locate_dictionary(), self.binary_data_dir / 'dictionary.txt') | |
self.check_coverage() | |
# Process valid set and train set | |
try: | |
self.process_dataset('valid') | |
self.process_dataset( | |
'train', | |
num_workers=int(self.binarization_args['num_workers']), | |
apply_augmentation=any(args['enabled'] for args in self.augmentation_args.values()) | |
) | |
except KeyboardInterrupt: | |
exit(-1) | |
def check_coverage(self): | |
# Group by phonemes in the dictionary. | |
ph_required = set(build_phoneme_list()) | |
phoneme_map = {} | |
for ph in ph_required: | |
phoneme_map[ph] = 0 | |
ph_occurred = [] | |
# Load and count those phones that appear in the actual data | |
for item_name in self.items: | |
ph_occurred += self.items[item_name]['ph_seq'] | |
if len(ph_occurred) == 0: | |
raise BinarizationError(f'Empty tokens in {item_name}.') | |
for ph in ph_occurred: | |
if ph not in ph_required: | |
continue | |
phoneme_map[ph] += 1 | |
ph_occurred = set(ph_occurred) | |
print('===== Phoneme Distribution Summary =====') | |
for i, key in enumerate(sorted(phoneme_map.keys())): | |
if i == len(ph_required) - 1: | |
end = '\n' | |
elif i % 10 == 9: | |
end = ',\n' | |
else: | |
end = ', ' | |
print(f'\'{key}\': {phoneme_map[key]}', end=end) | |
# Draw graph. | |
x = sorted(phoneme_map.keys()) | |
values = [phoneme_map[k] for k in x] | |
plt = distribution_to_figure( | |
title='Phoneme Distribution Summary', | |
x_label='Phoneme', y_label='Number of occurrences', | |
items=x, values=values | |
) | |
filename = self.binary_data_dir / 'phoneme_distribution.jpg' | |
plt.savefig(fname=filename, | |
bbox_inches='tight', | |
pad_inches=0.25) | |
print(f'| save summary to \'{filename}\'') | |
# Check unrecognizable or missing phonemes | |
if ph_occurred != ph_required: | |
unrecognizable_phones = ph_occurred.difference(ph_required) | |
missing_phones = ph_required.difference(ph_occurred) | |
raise BinarizationError('transcriptions and dictionary mismatch.\n' | |
f' (+) {sorted(unrecognizable_phones)}\n' | |
f' (-) {sorted(missing_phones)}') | |
def process_dataset(self, prefix, num_workers=0, apply_augmentation=False): | |
args = [] | |
builder = IndexedDatasetBuilder(self.binary_data_dir, prefix=prefix, allowed_attr=self.data_attrs) | |
total_sec = {k: 0.0 for k in self.spk_map} | |
total_raw_sec = {k: 0.0 for k in self.spk_map} | |
extra_info = {'names': {}, 'spk_ids': {}, 'spk_names': {}, 'lengths': {}} | |
max_no = -1 | |
for item_name, meta_data in self.meta_data_iterator(prefix): | |
args.append([item_name, meta_data, self.binarization_args]) | |
aug_map = self.arrange_data_augmentation(self.meta_data_iterator(prefix)) if apply_augmentation else {} | |
def postprocess(_item): | |
nonlocal total_sec, total_raw_sec, extra_info, max_no | |
if _item is None: | |
return | |
item_no = builder.add_item(_item) | |
max_no = max(max_no, item_no) | |
for k, v in _item.items(): | |
if isinstance(v, np.ndarray): | |
if k not in extra_info: | |
extra_info[k] = {} | |
extra_info[k][item_no] = v.shape[0] | |
extra_info['names'][item_no] = _item['name'].split(':', 1)[-1] | |
extra_info['spk_ids'][item_no] = _item['spk_id'] | |
extra_info['spk_names'][item_no] = _item['spk_name'] | |
extra_info['lengths'][item_no] = _item['length'] | |
total_raw_sec[_item['spk_name']] += _item['seconds'] | |
total_sec[_item['spk_name']] += _item['seconds'] | |
for task in aug_map.get(_item['name'], []): | |
aug_item = task['func'](_item, **task['kwargs']) | |
aug_item_no = builder.add_item(aug_item) | |
max_no = max(max_no, aug_item_no) | |
for k, v in aug_item.items(): | |
if isinstance(v, np.ndarray): | |
if k not in extra_info: | |
extra_info[k] = {} | |
extra_info[k][aug_item_no] = v.shape[0] | |
extra_info['names'][aug_item_no] = aug_item['name'].split(':', 1)[-1] | |
extra_info['spk_ids'][aug_item_no] = aug_item['spk_id'] | |
extra_info['spk_names'][aug_item_no] = aug_item['spk_name'] | |
extra_info['lengths'][aug_item_no] = aug_item['length'] | |
total_sec[aug_item['spk_name']] += aug_item['seconds'] | |
try: | |
if num_workers > 0: | |
# code for parallel processing | |
for item in tqdm( | |
chunked_multiprocess_run(self.process_item, args, num_workers=num_workers), | |
total=len(list(self.meta_data_iterator(prefix))) | |
): | |
postprocess(item) | |
else: | |
# code for single cpu processing | |
for a in tqdm(args): | |
item = self.process_item(*a) | |
postprocess(item) | |
for k in extra_info: | |
assert set(extra_info[k]) == set(range(max_no + 1)), f'Item numbering is not consecutive.' | |
extra_info[k] = list(map(lambda x: x[1], sorted(extra_info[k].items(), key=lambda x: x[0]))) | |
except KeyboardInterrupt: | |
builder.finalize() | |
raise | |
builder.finalize() | |
if prefix == "train": | |
extra_info.pop("names") | |
extra_info.pop("spk_names") | |
with open(self.binary_data_dir / f"{prefix}.meta", "wb") as f: | |
# noinspection PyTypeChecker | |
pickle.dump(extra_info, f) | |
if apply_augmentation: | |
print(f"| {prefix} total duration (before augmentation): {sum(total_raw_sec.values()):.2f}s") | |
print( | |
f"| {prefix} respective duration (before augmentation): " | |
+ ', '.join(f'{k}={v:.2f}s' for k, v in total_raw_sec.items()) | |
) | |
print( | |
f"| {prefix} total duration (after augmentation): " | |
f"{sum(total_sec.values()):.2f}s ({sum(total_sec.values()) / sum(total_raw_sec.values()):.2f}x)" | |
) | |
print( | |
f"| {prefix} respective duration (after augmentation): " | |
+ ', '.join(f'{k}={v:.2f}s' for k, v in total_sec.items()) | |
) | |
else: | |
print(f"| {prefix} total duration: {sum(total_raw_sec.values()):.2f}s") | |
print(f"| {prefix} respective duration: " + ', '.join(f'{k}={v:.2f}s' for k, v in total_raw_sec.items())) | |
def arrange_data_augmentation(self, data_iterator): | |
""" | |
Code for all types of data augmentation should be added here. | |
""" | |
raise NotImplementedError() | |
def process_item(self, item_name, meta_data, binarization_args): | |
raise NotImplementedError() | |