Spaces:
Sleeping
Sleeping
File size: 14,446 Bytes
c42fe7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import json
import pathlib
import pickle
import random
import shutil
import warnings
from copy import deepcopy
import numpy as np
import torch
from tqdm import tqdm
from utils.hparams import hparams
from utils.indexed_datasets import IndexedDatasetBuilder
from utils.multiprocess_utils import chunked_multiprocess_run
from utils.phoneme_utils import build_phoneme_list, locate_dictionary
from utils.plot import distribution_to_figure
from utils.text_encoder import TokenTextEncoder
class BinarizationError(Exception):
pass
class BaseBinarizer:
"""
Base class for data processing.
1. *process* and *process_data_split*:
process entire data, generate the train-test split (support parallel processing);
2. *process_item*:
process singe piece of data;
3. *get_pitch*:
infer the pitch using some algorithm;
4. *get_align*:
get the alignment using 'mel2ph' format (see https://arxiv.org/abs/1905.09263).
5. phoneme encoder, voice encoder, etc.
Subclasses should define:
1. *load_metadata*:
how to read multiple datasets from files;
2. *train_item_names*, *valid_item_names*, *test_item_names*:
how to split the dataset;
3. load_ph_set:
the phoneme set.
"""
def __init__(self, data_dir=None, data_attrs=None):
if data_dir is None:
data_dir = hparams['raw_data_dir']
if not isinstance(data_dir, list):
data_dir = [data_dir]
self.raw_data_dirs = [pathlib.Path(d) for d in data_dir]
self.binary_data_dir = pathlib.Path(hparams['binary_data_dir'])
self.data_attrs = [] if data_attrs is None else data_attrs
self.binarization_args = hparams['binarization_args']
self.augmentation_args = hparams.get('augmentation_args', {})
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.spk_map = None
self.spk_ids = hparams['spk_ids']
self.speakers = hparams['speakers']
self.build_spk_map()
self.items = {}
self.item_names: list = None
self._train_item_names: list = None
self._valid_item_names: list = None
self.phone_encoder = TokenTextEncoder(vocab_list=build_phoneme_list())
self.timestep = hparams['hop_size'] / hparams['audio_sample_rate']
def build_spk_map(self):
assert isinstance(self.speakers, list), 'Speakers must be a list'
assert len(self.speakers) == len(self.raw_data_dirs), \
'Number of raw data dirs must equal number of speaker names!'
if len(self.spk_ids) == 0:
self.spk_ids = list(range(len(self.raw_data_dirs)))
else:
assert len(self.spk_ids) == len(self.raw_data_dirs), \
'Length of explicitly given spk_ids must equal the number of raw datasets.'
assert max(self.spk_ids) < hparams['num_spk'], \
f'Index in spk_id sequence {self.spk_ids} is out of range. All values should be smaller than num_spk.'
self.spk_map = {}
for spk_name, spk_id in zip(self.speakers, self.spk_ids):
if spk_name in self.spk_map and self.spk_map[spk_name] != spk_id:
raise ValueError(f'Invalid speaker ID assignment. Name \'{spk_name}\' is assigned '
f'with different speaker IDs: {self.spk_map[spk_name]} and {spk_id}.')
self.spk_map[spk_name] = spk_id
print("| spk_map: ", self.spk_map)
def load_meta_data(self, raw_data_dir: pathlib.Path, ds_id, spk_id):
raise NotImplementedError()
def split_train_valid_set(self, item_names):
"""
Split the dataset into training set and validation set.
:return: train_item_names, valid_item_names
"""
prefixes = {str(pr): 1 for pr in hparams['test_prefixes']}
valid_item_names = {}
# Add prefixes that specified speaker index and matches exactly item name to test set
for prefix in deepcopy(prefixes):
if prefix in item_names:
valid_item_names[prefix] = 1
prefixes.pop(prefix)
# Add prefixes that exactly matches item name without speaker id to test set
for prefix in deepcopy(prefixes):
matched = False
for name in item_names:
if name.split(':')[-1] == prefix:
valid_item_names[name] = 1
matched = True
if matched:
prefixes.pop(prefix)
# Add names with one of the remaining prefixes to test set
for prefix in deepcopy(prefixes):
matched = False
for name in item_names:
if name.startswith(prefix):
valid_item_names[name] = 1
matched = True
if matched:
prefixes.pop(prefix)
for prefix in deepcopy(prefixes):
matched = False
for name in item_names:
if name.split(':')[-1].startswith(prefix):
valid_item_names[name] = 1
matched = True
if matched:
prefixes.pop(prefix)
if len(prefixes) != 0:
warnings.warn(
f'The following rules in test_prefixes have no matching names in the dataset: {", ".join(prefixes.keys())}',
category=UserWarning
)
warnings.filterwarnings('default')
valid_item_names = list(valid_item_names.keys())
assert len(valid_item_names) > 0, 'Validation set is empty!'
train_item_names = [x for x in item_names if x not in set(valid_item_names)]
assert len(train_item_names) > 0, 'Training set is empty!'
return train_item_names, valid_item_names
@property
def train_item_names(self):
return self._train_item_names
@property
def valid_item_names(self):
return self._valid_item_names
def meta_data_iterator(self, prefix):
if prefix == 'train':
item_names = self.train_item_names
else:
item_names = self.valid_item_names
for item_name in item_names:
meta_data = self.items[item_name]
yield item_name, meta_data
def process(self):
# load each dataset
for ds_id, spk_id, data_dir in zip(range(len(self.raw_data_dirs)), self.spk_ids, self.raw_data_dirs):
self.load_meta_data(pathlib.Path(data_dir), ds_id=ds_id, spk_id=spk_id)
self.item_names = sorted(list(self.items.keys()))
self._train_item_names, self._valid_item_names = self.split_train_valid_set(self.item_names)
if self.binarization_args['shuffle']:
random.shuffle(self.item_names)
self.binary_data_dir.mkdir(parents=True, exist_ok=True)
# Copy spk_map and dictionary to binary data dir
spk_map_fn = self.binary_data_dir / 'spk_map.json'
with open(spk_map_fn, 'w', encoding='utf-8') as f:
json.dump(self.spk_map, f)
shutil.copy(locate_dictionary(), self.binary_data_dir / 'dictionary.txt')
self.check_coverage()
# Process valid set and train set
try:
self.process_dataset('valid')
self.process_dataset(
'train',
num_workers=int(self.binarization_args['num_workers']),
apply_augmentation=any(args['enabled'] for args in self.augmentation_args.values())
)
except KeyboardInterrupt:
exit(-1)
def check_coverage(self):
# Group by phonemes in the dictionary.
ph_required = set(build_phoneme_list())
phoneme_map = {}
for ph in ph_required:
phoneme_map[ph] = 0
ph_occurred = []
# Load and count those phones that appear in the actual data
for item_name in self.items:
ph_occurred += self.items[item_name]['ph_seq']
if len(ph_occurred) == 0:
raise BinarizationError(f'Empty tokens in {item_name}.')
for ph in ph_occurred:
if ph not in ph_required:
continue
phoneme_map[ph] += 1
ph_occurred = set(ph_occurred)
print('===== Phoneme Distribution Summary =====')
for i, key in enumerate(sorted(phoneme_map.keys())):
if i == len(ph_required) - 1:
end = '\n'
elif i % 10 == 9:
end = ',\n'
else:
end = ', '
print(f'\'{key}\': {phoneme_map[key]}', end=end)
# Draw graph.
x = sorted(phoneme_map.keys())
values = [phoneme_map[k] for k in x]
plt = distribution_to_figure(
title='Phoneme Distribution Summary',
x_label='Phoneme', y_label='Number of occurrences',
items=x, values=values
)
filename = self.binary_data_dir / 'phoneme_distribution.jpg'
plt.savefig(fname=filename,
bbox_inches='tight',
pad_inches=0.25)
print(f'| save summary to \'{filename}\'')
# Check unrecognizable or missing phonemes
if ph_occurred != ph_required:
unrecognizable_phones = ph_occurred.difference(ph_required)
missing_phones = ph_required.difference(ph_occurred)
raise BinarizationError('transcriptions and dictionary mismatch.\n'
f' (+) {sorted(unrecognizable_phones)}\n'
f' (-) {sorted(missing_phones)}')
def process_dataset(self, prefix, num_workers=0, apply_augmentation=False):
args = []
builder = IndexedDatasetBuilder(self.binary_data_dir, prefix=prefix, allowed_attr=self.data_attrs)
total_sec = {k: 0.0 for k in self.spk_map}
total_raw_sec = {k: 0.0 for k in self.spk_map}
extra_info = {'names': {}, 'spk_ids': {}, 'spk_names': {}, 'lengths': {}}
max_no = -1
for item_name, meta_data in self.meta_data_iterator(prefix):
args.append([item_name, meta_data, self.binarization_args])
aug_map = self.arrange_data_augmentation(self.meta_data_iterator(prefix)) if apply_augmentation else {}
def postprocess(_item):
nonlocal total_sec, total_raw_sec, extra_info, max_no
if _item is None:
return
item_no = builder.add_item(_item)
max_no = max(max_no, item_no)
for k, v in _item.items():
if isinstance(v, np.ndarray):
if k not in extra_info:
extra_info[k] = {}
extra_info[k][item_no] = v.shape[0]
extra_info['names'][item_no] = _item['name'].split(':', 1)[-1]
extra_info['spk_ids'][item_no] = _item['spk_id']
extra_info['spk_names'][item_no] = _item['spk_name']
extra_info['lengths'][item_no] = _item['length']
total_raw_sec[_item['spk_name']] += _item['seconds']
total_sec[_item['spk_name']] += _item['seconds']
for task in aug_map.get(_item['name'], []):
aug_item = task['func'](_item, **task['kwargs'])
aug_item_no = builder.add_item(aug_item)
max_no = max(max_no, aug_item_no)
for k, v in aug_item.items():
if isinstance(v, np.ndarray):
if k not in extra_info:
extra_info[k] = {}
extra_info[k][aug_item_no] = v.shape[0]
extra_info['names'][aug_item_no] = aug_item['name'].split(':', 1)[-1]
extra_info['spk_ids'][aug_item_no] = aug_item['spk_id']
extra_info['spk_names'][aug_item_no] = aug_item['spk_name']
extra_info['lengths'][aug_item_no] = aug_item['length']
total_sec[aug_item['spk_name']] += aug_item['seconds']
try:
if num_workers > 0:
# code for parallel processing
for item in tqdm(
chunked_multiprocess_run(self.process_item, args, num_workers=num_workers),
total=len(list(self.meta_data_iterator(prefix)))
):
postprocess(item)
else:
# code for single cpu processing
for a in tqdm(args):
item = self.process_item(*a)
postprocess(item)
for k in extra_info:
assert set(extra_info[k]) == set(range(max_no + 1)), f'Item numbering is not consecutive.'
extra_info[k] = list(map(lambda x: x[1], sorted(extra_info[k].items(), key=lambda x: x[0])))
except KeyboardInterrupt:
builder.finalize()
raise
builder.finalize()
if prefix == "train":
extra_info.pop("names")
extra_info.pop("spk_names")
with open(self.binary_data_dir / f"{prefix}.meta", "wb") as f:
# noinspection PyTypeChecker
pickle.dump(extra_info, f)
if apply_augmentation:
print(f"| {prefix} total duration (before augmentation): {sum(total_raw_sec.values()):.2f}s")
print(
f"| {prefix} respective duration (before augmentation): "
+ ', '.join(f'{k}={v:.2f}s' for k, v in total_raw_sec.items())
)
print(
f"| {prefix} total duration (after augmentation): "
f"{sum(total_sec.values()):.2f}s ({sum(total_sec.values()) / sum(total_raw_sec.values()):.2f}x)"
)
print(
f"| {prefix} respective duration (after augmentation): "
+ ', '.join(f'{k}={v:.2f}s' for k, v in total_sec.items())
)
else:
print(f"| {prefix} total duration: {sum(total_raw_sec.values()):.2f}s")
print(f"| {prefix} respective duration: " + ', '.join(f'{k}={v:.2f}s' for k, v in total_raw_sec.items()))
def arrange_data_augmentation(self, data_iterator):
"""
Code for all types of data augmentation should be added here.
"""
raise NotImplementedError()
def process_item(self, item_name, meta_data, binarization_args):
raise NotImplementedError()
|