Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
from collections import deque | |
from functools import partial | |
from typing import List, Tuple | |
import numpy as np | |
import torch | |
from torch import nn | |
from tqdm import tqdm | |
from modules.backbones import build_backbone | |
from utils.hparams import hparams | |
def extract(a, t, x_shape): | |
b, *_ = t.shape | |
out = a.gather(-1, t) | |
return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
def noise_like(shape, device, repeat=False): | |
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) | |
noise = lambda: torch.randn(shape, device=device) | |
return repeat_noise() if repeat else noise() | |
def linear_beta_schedule(timesteps, max_beta=0.01): | |
""" | |
linear schedule | |
""" | |
betas = np.linspace(1e-4, max_beta, timesteps) | |
return betas | |
def cosine_beta_schedule(timesteps, s=0.008): | |
""" | |
cosine schedule | |
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ | |
""" | |
steps = timesteps + 1 | |
x = np.linspace(0, steps, steps) | |
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2 | |
alphas_cumprod = alphas_cumprod / alphas_cumprod[0] | |
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) | |
return np.clip(betas, a_min=0, a_max=0.999) | |
beta_schedule = { | |
"cosine": cosine_beta_schedule, | |
"linear": linear_beta_schedule, | |
} | |
class GaussianDiffusion(nn.Module): | |
def __init__(self, out_dims, num_feats=1, timesteps=1000, k_step=1000, | |
backbone_type=None, backbone_args=None, betas=None, | |
spec_min=None, spec_max=None): | |
super().__init__() | |
self.denoise_fn: nn.Module = build_backbone(out_dims, num_feats, backbone_type, backbone_args) | |
self.out_dims = out_dims | |
self.num_feats = num_feats | |
if betas is not None: | |
betas = betas.detach().cpu().numpy() if isinstance(betas, torch.Tensor) else betas | |
else: | |
betas = beta_schedule[hparams['schedule_type']](timesteps) | |
alphas = 1. - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) | |
self.use_shallow_diffusion = hparams.get('use_shallow_diffusion', False) | |
if self.use_shallow_diffusion: | |
assert k_step <= timesteps, 'K_step should not be larger than timesteps.' | |
self.timesteps = timesteps | |
self.k_step = k_step if self.use_shallow_diffusion else timesteps | |
self.noise_list = deque(maxlen=4) | |
to_torch = partial(torch.tensor, dtype=torch.float32) | |
self.register_buffer('betas', to_torch(betas)) | |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) | |
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) | |
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) | |
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) | |
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) | |
self.register_buffer('posterior_variance', to_torch(posterior_variance)) | |
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) | |
self.register_buffer('posterior_mean_coef1', to_torch( | |
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) | |
self.register_buffer('posterior_mean_coef2', to_torch( | |
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) | |
# spec: [B, T, M] or [B, F, T, M] | |
# spec_min and spec_max: [1, 1, M] or [1, 1, F, M] => transpose(-3, -2) => [1, 1, M] or [1, F, 1, M] | |
spec_min = torch.FloatTensor(spec_min)[None, None, :out_dims].transpose(-3, -2) | |
spec_max = torch.FloatTensor(spec_max)[None, None, :out_dims].transpose(-3, -2) | |
self.register_buffer('spec_min', spec_min) | |
self.register_buffer('spec_max', spec_max) | |
# for compatibility with ONNX continuous acceleration | |
self.time_scale_factor = self.timesteps | |
self.t_start = 1 - self.k_step / self.timesteps | |
factors = torch.LongTensor([i for i in range(1, self.timesteps + 1) if self.timesteps % i == 0]) | |
self.register_buffer('timestep_factors', factors, persistent=False) | |
def q_mean_variance(self, x_start, t): | |
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
variance = extract(1. - self.alphas_cumprod, t, x_start.shape) | |
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape) | |
return mean, variance, log_variance | |
def predict_start_from_noise(self, x_t, t, noise): | |
return ( | |
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - | |
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise | |
) | |
def q_posterior(self, x_start, x_t, t): | |
posterior_mean = ( | |
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + | |
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
) | |
posterior_variance = extract(self.posterior_variance, t, x_t.shape) | |
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def p_mean_variance(self, x, t, cond): | |
noise_pred = self.denoise_fn(x, t, cond=cond) | |
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred) | |
# This is previously inherited from original DiffSinger repository | |
# and disabled due to some loudness issues when speedup = 1. | |
# x_recon.clamp_(-1., 1.) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False): | |
b, *_, device = *x.shape, x.device | |
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond) | |
noise = noise_like(x.shape, device, repeat_noise) | |
# no noise when t == 0 | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def p_sample_ddim(self, x, t, interval, cond): | |
a_t = extract(self.alphas_cumprod, t, x.shape) | |
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape) | |
noise_pred = self.denoise_fn(x, t, cond=cond) | |
x_prev = a_prev.sqrt() * ( | |
x / a_t.sqrt() + (((1 - a_prev) / a_prev).sqrt() - ((1 - a_t) / a_t).sqrt()) * noise_pred | |
) | |
return x_prev | |
def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False): | |
""" | |
Use the PLMS method from | |
[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778). | |
""" | |
def get_x_pred(x, noise_t, t): | |
a_t = extract(self.alphas_cumprod, t, x.shape) | |
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape) | |
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt() | |
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / ( | |
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t) | |
x_pred = x + x_delta | |
return x_pred | |
noise_list = self.noise_list | |
noise_pred = self.denoise_fn(x, t, cond=cond) | |
if len(noise_list) == 0: | |
x_pred = get_x_pred(x, noise_pred, t) | |
noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond) | |
noise_pred_prime = (noise_pred + noise_pred_prev) / 2 | |
elif len(noise_list) == 1: | |
noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2 | |
elif len(noise_list) == 2: | |
noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12 | |
else: | |
noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24 | |
x_prev = get_x_pred(x, noise_pred_prime, t) | |
noise_list.append(noise_pred) | |
return x_prev | |
def q_sample(self, x_start, t, noise): | |
return ( | |
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + | |
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise | |
) | |
def p_losses(self, x_start, t, cond, noise=None): | |
if noise is None: | |
noise = torch.randn_like(x_start) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
x_recon = self.denoise_fn(x_noisy, t, cond) | |
return x_recon, noise | |
def inference(self, cond, b=1, x_start=None, device=None): | |
depth = hparams.get('K_step_infer', self.k_step) | |
speedup = hparams['diff_speedup'] | |
if speedup > 0: | |
assert depth % speedup == 0, f'Acceleration ratio must be a factor of diffusion depth {depth}.' | |
noise = torch.randn(b, self.num_feats, self.out_dims, cond.shape[2], device=device) | |
if self.use_shallow_diffusion: | |
t_max = min(depth, self.k_step) | |
else: | |
t_max = self.k_step | |
if t_max >= self.timesteps: | |
x = noise | |
elif t_max > 0: | |
assert x_start is not None, 'Missing shallow diffusion source.' | |
x = self.q_sample( | |
x_start, torch.full((b,), t_max - 1, device=device, dtype=torch.long), noise | |
) | |
else: | |
assert x_start is not None, 'Missing shallow diffusion source.' | |
x = x_start | |
if speedup > 1 and t_max > 0: | |
algorithm = hparams['diff_accelerator'] | |
if algorithm == 'dpm-solver': | |
from inference.dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver | |
# 1. Define the noise schedule. | |
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t_max]) | |
# 2. Convert your discrete-time `model` to the continuous-time | |
# noise prediction model. Here is an example for a diffusion model | |
# `model` with the noise prediction type ("noise") . | |
def my_wrapper(fn): | |
def wrapped(x, t, **kwargs): | |
ret = fn(x, t, **kwargs) | |
self.bar.update(1) | |
return ret | |
return wrapped | |
model_fn = model_wrapper( | |
my_wrapper(self.denoise_fn), | |
noise_schedule, | |
model_type="noise", # or "x_start" or "v" or "score" | |
model_kwargs={"cond": cond} | |
) | |
# 3. Define dpm-solver and sample by singlestep DPM-Solver. | |
# (We recommend singlestep DPM-Solver for unconditional sampling) | |
# You can adjust the `steps` to balance the computation | |
# costs and the sample quality. | |
dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++") | |
steps = t_max // hparams["diff_speedup"] | |
self.bar = tqdm(desc="sample time step", total=steps, disable=not hparams['infer'], leave=False) | |
x = dpm_solver.sample( | |
x, | |
steps=steps, | |
order=2, | |
skip_type="time_uniform", | |
method="multistep", | |
) | |
self.bar.close() | |
elif algorithm == 'unipc': | |
from inference.uni_pc import NoiseScheduleVP, model_wrapper, UniPC | |
# 1. Define the noise schedule. | |
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t_max]) | |
# 2. Convert your discrete-time `model` to the continuous-time | |
# noise prediction model. Here is an example for a diffusion model | |
# `model` with the noise prediction type ("noise") . | |
def my_wrapper(fn): | |
def wrapped(x, t, **kwargs): | |
ret = fn(x, t, **kwargs) | |
self.bar.update(1) | |
return ret | |
return wrapped | |
model_fn = model_wrapper( | |
my_wrapper(self.denoise_fn), | |
noise_schedule, | |
model_type="noise", # or "x_start" or "v" or "score" | |
model_kwargs={"cond": cond} | |
) | |
# 3. Define uni_pc and sample by multistep UniPC. | |
# You can adjust the `steps` to balance the computation | |
# costs and the sample quality. | |
uni_pc = UniPC(model_fn, noise_schedule, variant='bh2') | |
steps = t_max // hparams["diff_speedup"] | |
self.bar = tqdm(desc="sample time step", total=steps, disable=not hparams['infer'], leave=False) | |
x = uni_pc.sample( | |
x, | |
steps=steps, | |
order=2, | |
skip_type="time_uniform", | |
method="multistep", | |
) | |
self.bar.close() | |
elif algorithm == 'pndm': | |
self.noise_list = deque(maxlen=4) | |
iteration_interval = speedup | |
for i in tqdm( | |
reversed(range(0, t_max, iteration_interval)), desc='sample time step', | |
total=t_max // iteration_interval, disable=not hparams['infer'], leave=False | |
): | |
x = self.p_sample_plms( | |
x, torch.full((b,), i, device=device, dtype=torch.long), | |
iteration_interval, cond=cond | |
) | |
elif algorithm == 'ddim': | |
iteration_interval = speedup | |
for i in tqdm( | |
reversed(range(0, t_max, iteration_interval)), desc='sample time step', | |
total=t_max // iteration_interval, disable=not hparams['infer'], leave=False | |
): | |
x = self.p_sample_ddim( | |
x, torch.full((b,), i, device=device, dtype=torch.long), | |
iteration_interval, cond=cond | |
) | |
else: | |
raise ValueError(f"Unsupported acceleration algorithm for DDPM: {algorithm}.") | |
else: | |
for i in tqdm(reversed(range(0, t_max)), desc='sample time step', total=t_max, | |
disable=not hparams['infer'], leave=False): | |
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond) | |
x = x.transpose(2, 3).squeeze(1) # [B, F, M, T] => [B, T, M] or [B, F, T, M] | |
return x | |
def forward(self, condition, gt_spec=None, src_spec=None, infer=True): | |
""" | |
conditioning diffusion, use fastspeech2 encoder output as the condition | |
""" | |
cond = condition.transpose(1, 2) | |
b, device = condition.shape[0], condition.device | |
if not infer: | |
# gt_spec: [B, T, M] or [B, F, T, M] | |
spec = self.norm_spec(gt_spec).transpose(-2, -1) # [B, M, T] or [B, F, M, T] | |
if self.num_feats == 1: | |
spec = spec[:, None, :, :] # [B, F=1, M, T] | |
t = torch.randint(0, self.k_step, (b,), device=device).long() | |
x_recon, noise = self.p_losses(spec, t, cond=cond) | |
return x_recon, noise | |
else: | |
# src_spec: [B, T, M] or [B, F, T, M] | |
if src_spec is not None: | |
spec = self.norm_spec(src_spec).transpose(-2, -1) | |
if self.num_feats == 1: | |
spec = spec[:, None, :, :] | |
else: | |
spec = None | |
x = self.inference(cond, b=b, x_start=spec, device=device) | |
return self.denorm_spec(x) | |
def norm_spec(self, x): | |
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1 | |
def denorm_spec(self, x): | |
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min | |
class RepetitiveDiffusion(GaussianDiffusion): | |
def __init__(self, vmin: float | int | list, vmax: float | int | list, | |
repeat_bins: int, timesteps=1000, k_step=1000, | |
backbone_type=None, backbone_args=None, | |
betas=None): | |
assert (isinstance(vmin, (float, int)) and isinstance(vmin, (float, int))) or len(vmin) == len(vmax) | |
num_feats = 1 if isinstance(vmin, (float, int)) else len(vmin) | |
spec_min = [vmin] if num_feats == 1 else [[v] for v in vmin] | |
spec_max = [vmax] if num_feats == 1 else [[v] for v in vmax] | |
self.repeat_bins = repeat_bins | |
super().__init__( | |
out_dims=repeat_bins, num_feats=num_feats, | |
timesteps=timesteps, k_step=k_step, | |
backbone_type=backbone_type, backbone_args=backbone_args, | |
betas=betas, spec_min=spec_min, spec_max=spec_max | |
) | |
def norm_spec(self, x): | |
""" | |
:param x: [B, T] or [B, F, T] | |
:return [B, T, R] or [B, F, T, R] | |
""" | |
if self.num_feats == 1: | |
repeats = [1, 1, self.repeat_bins] | |
else: | |
repeats = [1, 1, 1, self.repeat_bins] | |
return super().norm_spec(x.unsqueeze(-1).repeat(repeats)) | |
def denorm_spec(self, x): | |
""" | |
:param x: [B, T, R] or [B, F, T, R] | |
:return [B, T] or [B, F, T] | |
""" | |
return super().denorm_spec(x).mean(dim=-1) | |
class PitchDiffusion(RepetitiveDiffusion): | |
def __init__(self, vmin: float, vmax: float, | |
cmin: float, cmax: float, repeat_bins, | |
timesteps=1000, k_step=1000, | |
backbone_type=None, backbone_args=None, | |
betas=None): | |
self.vmin = vmin # norm min | |
self.vmax = vmax # norm max | |
self.cmin = cmin # clip min | |
self.cmax = cmax # clip max | |
super().__init__( | |
vmin=vmin, vmax=vmax, repeat_bins=repeat_bins, | |
timesteps=timesteps, k_step=k_step, | |
backbone_type=backbone_type, backbone_args=backbone_args, | |
betas=betas | |
) | |
def norm_spec(self, x): | |
return super().norm_spec(x.clamp(min=self.cmin, max=self.cmax)) | |
def denorm_spec(self, x): | |
return super().denorm_spec(x).clamp(min=self.cmin, max=self.cmax) | |
class MultiVarianceDiffusion(RepetitiveDiffusion): | |
def __init__( | |
self, ranges: List[Tuple[float, float]], | |
clamps: List[Tuple[float | None, float | None] | None], | |
repeat_bins, timesteps=1000, k_step=1000, | |
backbone_type=None, backbone_args=None, | |
betas=None | |
): | |
assert len(ranges) == len(clamps) | |
self.clamps = clamps | |
vmin = [r[0] for r in ranges] | |
vmax = [r[1] for r in ranges] | |
if len(vmin) == 1: | |
vmin = vmin[0] | |
if len(vmax) == 1: | |
vmax = vmax[0] | |
super().__init__( | |
vmin=vmin, vmax=vmax, repeat_bins=repeat_bins, | |
timesteps=timesteps, k_step=k_step, | |
backbone_type=backbone_type, backbone_args=backbone_args, | |
betas=betas | |
) | |
def clamp_spec(self, xs: list | tuple): | |
clamped = [] | |
for x, c in zip(xs, self.clamps): | |
if c is None: | |
clamped.append(x) | |
continue | |
clamped.append(x.clamp(min=c[0], max=c[1])) | |
return clamped | |
def norm_spec(self, xs: list | tuple): | |
""" | |
:param xs: sequence of [B, T] | |
:return: [B, F, T] => super().norm_spec(xs) => [B, F, T, R] | |
""" | |
assert len(xs) == self.num_feats | |
clamped = self.clamp_spec(xs) | |
xs = torch.stack(clamped, dim=1) # [B, F, T] | |
if self.num_feats == 1: | |
xs = xs.squeeze(1) # [B, T] | |
return super().norm_spec(xs) | |
def denorm_spec(self, xs): | |
""" | |
:param xs: [B, T, R] or [B, F, T, R] => super().denorm_spec(xs) => [B, T] or [B, F, T] | |
:return: sequence of [B, T] | |
""" | |
xs = super().denorm_spec(xs) | |
if self.num_feats == 1: | |
xs = [xs] | |
else: | |
xs = xs.unbind(dim=1) | |
assert len(xs) == self.num_feats | |
return self.clamp_spec(xs) | |