liampond
Clean deploy snapshot
c42fe7e
raw
history blame
21.3 kB
from __future__ import annotations
from collections import deque
from functools import partial
from typing import List, Tuple
import numpy as np
import torch
from torch import nn
from tqdm import tqdm
from modules.backbones import build_backbone
from utils.hparams import hparams
def extract(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def noise_like(shape, device, repeat=False):
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
noise = lambda: torch.randn(shape, device=device)
return repeat_noise() if repeat else noise()
def linear_beta_schedule(timesteps, max_beta=0.01):
"""
linear schedule
"""
betas = np.linspace(1e-4, max_beta, timesteps)
return betas
def cosine_beta_schedule(timesteps, s=0.008):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 1
x = np.linspace(0, steps, steps)
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return np.clip(betas, a_min=0, a_max=0.999)
beta_schedule = {
"cosine": cosine_beta_schedule,
"linear": linear_beta_schedule,
}
class GaussianDiffusion(nn.Module):
def __init__(self, out_dims, num_feats=1, timesteps=1000, k_step=1000,
backbone_type=None, backbone_args=None, betas=None,
spec_min=None, spec_max=None):
super().__init__()
self.denoise_fn: nn.Module = build_backbone(out_dims, num_feats, backbone_type, backbone_args)
self.out_dims = out_dims
self.num_feats = num_feats
if betas is not None:
betas = betas.detach().cpu().numpy() if isinstance(betas, torch.Tensor) else betas
else:
betas = beta_schedule[hparams['schedule_type']](timesteps)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
self.use_shallow_diffusion = hparams.get('use_shallow_diffusion', False)
if self.use_shallow_diffusion:
assert k_step <= timesteps, 'K_step should not be larger than timesteps.'
self.timesteps = timesteps
self.k_step = k_step if self.use_shallow_diffusion else timesteps
self.noise_list = deque(maxlen=4)
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
# spec: [B, T, M] or [B, F, T, M]
# spec_min and spec_max: [1, 1, M] or [1, 1, F, M] => transpose(-3, -2) => [1, 1, M] or [1, F, 1, M]
spec_min = torch.FloatTensor(spec_min)[None, None, :out_dims].transpose(-3, -2)
spec_max = torch.FloatTensor(spec_max)[None, None, :out_dims].transpose(-3, -2)
self.register_buffer('spec_min', spec_min)
self.register_buffer('spec_max', spec_max)
# for compatibility with ONNX continuous acceleration
self.time_scale_factor = self.timesteps
self.t_start = 1 - self.k_step / self.timesteps
factors = torch.LongTensor([i for i in range(1, self.timesteps + 1) if self.timesteps % i == 0])
self.register_buffer('timestep_factors', factors, persistent=False)
def q_mean_variance(self, x_start, t):
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, cond):
noise_pred = self.denoise_fn(x, t, cond=cond)
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
# This is previously inherited from original DiffSinger repository
# and disabled due to some loudness issues when speedup = 1.
# x_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_ddim(self, x, t, interval, cond):
a_t = extract(self.alphas_cumprod, t, x.shape)
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
noise_pred = self.denoise_fn(x, t, cond=cond)
x_prev = a_prev.sqrt() * (
x / a_t.sqrt() + (((1 - a_prev) / a_prev).sqrt() - ((1 - a_t) / a_t).sqrt()) * noise_pred
)
return x_prev
@torch.no_grad()
def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
"""
Use the PLMS method from
[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
"""
def get_x_pred(x, noise_t, t):
a_t = extract(self.alphas_cumprod, t, x.shape)
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
x_pred = x + x_delta
return x_pred
noise_list = self.noise_list
noise_pred = self.denoise_fn(x, t, cond=cond)
if len(noise_list) == 0:
x_pred = get_x_pred(x, noise_pred, t)
noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
noise_pred_prime = (noise_pred + noise_pred_prev) / 2
elif len(noise_list) == 1:
noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
elif len(noise_list) == 2:
noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
else:
noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
x_prev = get_x_pred(x, noise_pred_prime, t)
noise_list.append(noise_pred)
return x_prev
def q_sample(self, x_start, t, noise):
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def p_losses(self, x_start, t, cond, noise=None):
if noise is None:
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_recon = self.denoise_fn(x_noisy, t, cond)
return x_recon, noise
def inference(self, cond, b=1, x_start=None, device=None):
depth = hparams.get('K_step_infer', self.k_step)
speedup = hparams['diff_speedup']
if speedup > 0:
assert depth % speedup == 0, f'Acceleration ratio must be a factor of diffusion depth {depth}.'
noise = torch.randn(b, self.num_feats, self.out_dims, cond.shape[2], device=device)
if self.use_shallow_diffusion:
t_max = min(depth, self.k_step)
else:
t_max = self.k_step
if t_max >= self.timesteps:
x = noise
elif t_max > 0:
assert x_start is not None, 'Missing shallow diffusion source.'
x = self.q_sample(
x_start, torch.full((b,), t_max - 1, device=device, dtype=torch.long), noise
)
else:
assert x_start is not None, 'Missing shallow diffusion source.'
x = x_start
if speedup > 1 and t_max > 0:
algorithm = hparams['diff_accelerator']
if algorithm == 'dpm-solver':
from inference.dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
# 1. Define the noise schedule.
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t_max])
# 2. Convert your discrete-time `model` to the continuous-time
# noise prediction model. Here is an example for a diffusion model
# `model` with the noise prediction type ("noise") .
def my_wrapper(fn):
def wrapped(x, t, **kwargs):
ret = fn(x, t, **kwargs)
self.bar.update(1)
return ret
return wrapped
model_fn = model_wrapper(
my_wrapper(self.denoise_fn),
noise_schedule,
model_type="noise", # or "x_start" or "v" or "score"
model_kwargs={"cond": cond}
)
# 3. Define dpm-solver and sample by singlestep DPM-Solver.
# (We recommend singlestep DPM-Solver for unconditional sampling)
# You can adjust the `steps` to balance the computation
# costs and the sample quality.
dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
steps = t_max // hparams["diff_speedup"]
self.bar = tqdm(desc="sample time step", total=steps, disable=not hparams['infer'], leave=False)
x = dpm_solver.sample(
x,
steps=steps,
order=2,
skip_type="time_uniform",
method="multistep",
)
self.bar.close()
elif algorithm == 'unipc':
from inference.uni_pc import NoiseScheduleVP, model_wrapper, UniPC
# 1. Define the noise schedule.
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t_max])
# 2. Convert your discrete-time `model` to the continuous-time
# noise prediction model. Here is an example for a diffusion model
# `model` with the noise prediction type ("noise") .
def my_wrapper(fn):
def wrapped(x, t, **kwargs):
ret = fn(x, t, **kwargs)
self.bar.update(1)
return ret
return wrapped
model_fn = model_wrapper(
my_wrapper(self.denoise_fn),
noise_schedule,
model_type="noise", # or "x_start" or "v" or "score"
model_kwargs={"cond": cond}
)
# 3. Define uni_pc and sample by multistep UniPC.
# You can adjust the `steps` to balance the computation
# costs and the sample quality.
uni_pc = UniPC(model_fn, noise_schedule, variant='bh2')
steps = t_max // hparams["diff_speedup"]
self.bar = tqdm(desc="sample time step", total=steps, disable=not hparams['infer'], leave=False)
x = uni_pc.sample(
x,
steps=steps,
order=2,
skip_type="time_uniform",
method="multistep",
)
self.bar.close()
elif algorithm == 'pndm':
self.noise_list = deque(maxlen=4)
iteration_interval = speedup
for i in tqdm(
reversed(range(0, t_max, iteration_interval)), desc='sample time step',
total=t_max // iteration_interval, disable=not hparams['infer'], leave=False
):
x = self.p_sample_plms(
x, torch.full((b,), i, device=device, dtype=torch.long),
iteration_interval, cond=cond
)
elif algorithm == 'ddim':
iteration_interval = speedup
for i in tqdm(
reversed(range(0, t_max, iteration_interval)), desc='sample time step',
total=t_max // iteration_interval, disable=not hparams['infer'], leave=False
):
x = self.p_sample_ddim(
x, torch.full((b,), i, device=device, dtype=torch.long),
iteration_interval, cond=cond
)
else:
raise ValueError(f"Unsupported acceleration algorithm for DDPM: {algorithm}.")
else:
for i in tqdm(reversed(range(0, t_max)), desc='sample time step', total=t_max,
disable=not hparams['infer'], leave=False):
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
x = x.transpose(2, 3).squeeze(1) # [B, F, M, T] => [B, T, M] or [B, F, T, M]
return x
def forward(self, condition, gt_spec=None, src_spec=None, infer=True):
"""
conditioning diffusion, use fastspeech2 encoder output as the condition
"""
cond = condition.transpose(1, 2)
b, device = condition.shape[0], condition.device
if not infer:
# gt_spec: [B, T, M] or [B, F, T, M]
spec = self.norm_spec(gt_spec).transpose(-2, -1) # [B, M, T] or [B, F, M, T]
if self.num_feats == 1:
spec = spec[:, None, :, :] # [B, F=1, M, T]
t = torch.randint(0, self.k_step, (b,), device=device).long()
x_recon, noise = self.p_losses(spec, t, cond=cond)
return x_recon, noise
else:
# src_spec: [B, T, M] or [B, F, T, M]
if src_spec is not None:
spec = self.norm_spec(src_spec).transpose(-2, -1)
if self.num_feats == 1:
spec = spec[:, None, :, :]
else:
spec = None
x = self.inference(cond, b=b, x_start=spec, device=device)
return self.denorm_spec(x)
def norm_spec(self, x):
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
def denorm_spec(self, x):
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
class RepetitiveDiffusion(GaussianDiffusion):
def __init__(self, vmin: float | int | list, vmax: float | int | list,
repeat_bins: int, timesteps=1000, k_step=1000,
backbone_type=None, backbone_args=None,
betas=None):
assert (isinstance(vmin, (float, int)) and isinstance(vmin, (float, int))) or len(vmin) == len(vmax)
num_feats = 1 if isinstance(vmin, (float, int)) else len(vmin)
spec_min = [vmin] if num_feats == 1 else [[v] for v in vmin]
spec_max = [vmax] if num_feats == 1 else [[v] for v in vmax]
self.repeat_bins = repeat_bins
super().__init__(
out_dims=repeat_bins, num_feats=num_feats,
timesteps=timesteps, k_step=k_step,
backbone_type=backbone_type, backbone_args=backbone_args,
betas=betas, spec_min=spec_min, spec_max=spec_max
)
def norm_spec(self, x):
"""
:param x: [B, T] or [B, F, T]
:return [B, T, R] or [B, F, T, R]
"""
if self.num_feats == 1:
repeats = [1, 1, self.repeat_bins]
else:
repeats = [1, 1, 1, self.repeat_bins]
return super().norm_spec(x.unsqueeze(-1).repeat(repeats))
def denorm_spec(self, x):
"""
:param x: [B, T, R] or [B, F, T, R]
:return [B, T] or [B, F, T]
"""
return super().denorm_spec(x).mean(dim=-1)
class PitchDiffusion(RepetitiveDiffusion):
def __init__(self, vmin: float, vmax: float,
cmin: float, cmax: float, repeat_bins,
timesteps=1000, k_step=1000,
backbone_type=None, backbone_args=None,
betas=None):
self.vmin = vmin # norm min
self.vmax = vmax # norm max
self.cmin = cmin # clip min
self.cmax = cmax # clip max
super().__init__(
vmin=vmin, vmax=vmax, repeat_bins=repeat_bins,
timesteps=timesteps, k_step=k_step,
backbone_type=backbone_type, backbone_args=backbone_args,
betas=betas
)
def norm_spec(self, x):
return super().norm_spec(x.clamp(min=self.cmin, max=self.cmax))
def denorm_spec(self, x):
return super().denorm_spec(x).clamp(min=self.cmin, max=self.cmax)
class MultiVarianceDiffusion(RepetitiveDiffusion):
def __init__(
self, ranges: List[Tuple[float, float]],
clamps: List[Tuple[float | None, float | None] | None],
repeat_bins, timesteps=1000, k_step=1000,
backbone_type=None, backbone_args=None,
betas=None
):
assert len(ranges) == len(clamps)
self.clamps = clamps
vmin = [r[0] for r in ranges]
vmax = [r[1] for r in ranges]
if len(vmin) == 1:
vmin = vmin[0]
if len(vmax) == 1:
vmax = vmax[0]
super().__init__(
vmin=vmin, vmax=vmax, repeat_bins=repeat_bins,
timesteps=timesteps, k_step=k_step,
backbone_type=backbone_type, backbone_args=backbone_args,
betas=betas
)
def clamp_spec(self, xs: list | tuple):
clamped = []
for x, c in zip(xs, self.clamps):
if c is None:
clamped.append(x)
continue
clamped.append(x.clamp(min=c[0], max=c[1]))
return clamped
def norm_spec(self, xs: list | tuple):
"""
:param xs: sequence of [B, T]
:return: [B, F, T] => super().norm_spec(xs) => [B, F, T, R]
"""
assert len(xs) == self.num_feats
clamped = self.clamp_spec(xs)
xs = torch.stack(clamped, dim=1) # [B, F, T]
if self.num_feats == 1:
xs = xs.squeeze(1) # [B, T]
return super().norm_spec(xs)
def denorm_spec(self, xs):
"""
:param xs: [B, T, R] or [B, F, T, R] => super().denorm_spec(xs) => [B, T] or [B, F, T]
:return: sequence of [B, T]
"""
xs = super().denorm_spec(xs)
if self.num_feats == 1:
xs = [xs]
else:
xs = xs.unbind(dim=1)
assert len(xs) == self.num_feats
return self.clamp_spec(xs)