Spaces:
Sleeping
Sleeping
File size: 21,323 Bytes
c42fe7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
from __future__ import annotations
from collections import deque
from functools import partial
from typing import List, Tuple
import numpy as np
import torch
from torch import nn
from tqdm import tqdm
from modules.backbones import build_backbone
from utils.hparams import hparams
def extract(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def noise_like(shape, device, repeat=False):
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
noise = lambda: torch.randn(shape, device=device)
return repeat_noise() if repeat else noise()
def linear_beta_schedule(timesteps, max_beta=0.01):
"""
linear schedule
"""
betas = np.linspace(1e-4, max_beta, timesteps)
return betas
def cosine_beta_schedule(timesteps, s=0.008):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 1
x = np.linspace(0, steps, steps)
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return np.clip(betas, a_min=0, a_max=0.999)
beta_schedule = {
"cosine": cosine_beta_schedule,
"linear": linear_beta_schedule,
}
class GaussianDiffusion(nn.Module):
def __init__(self, out_dims, num_feats=1, timesteps=1000, k_step=1000,
backbone_type=None, backbone_args=None, betas=None,
spec_min=None, spec_max=None):
super().__init__()
self.denoise_fn: nn.Module = build_backbone(out_dims, num_feats, backbone_type, backbone_args)
self.out_dims = out_dims
self.num_feats = num_feats
if betas is not None:
betas = betas.detach().cpu().numpy() if isinstance(betas, torch.Tensor) else betas
else:
betas = beta_schedule[hparams['schedule_type']](timesteps)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
self.use_shallow_diffusion = hparams.get('use_shallow_diffusion', False)
if self.use_shallow_diffusion:
assert k_step <= timesteps, 'K_step should not be larger than timesteps.'
self.timesteps = timesteps
self.k_step = k_step if self.use_shallow_diffusion else timesteps
self.noise_list = deque(maxlen=4)
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
# spec: [B, T, M] or [B, F, T, M]
# spec_min and spec_max: [1, 1, M] or [1, 1, F, M] => transpose(-3, -2) => [1, 1, M] or [1, F, 1, M]
spec_min = torch.FloatTensor(spec_min)[None, None, :out_dims].transpose(-3, -2)
spec_max = torch.FloatTensor(spec_max)[None, None, :out_dims].transpose(-3, -2)
self.register_buffer('spec_min', spec_min)
self.register_buffer('spec_max', spec_max)
# for compatibility with ONNX continuous acceleration
self.time_scale_factor = self.timesteps
self.t_start = 1 - self.k_step / self.timesteps
factors = torch.LongTensor([i for i in range(1, self.timesteps + 1) if self.timesteps % i == 0])
self.register_buffer('timestep_factors', factors, persistent=False)
def q_mean_variance(self, x_start, t):
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, cond):
noise_pred = self.denoise_fn(x, t, cond=cond)
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
# This is previously inherited from original DiffSinger repository
# and disabled due to some loudness issues when speedup = 1.
# x_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_ddim(self, x, t, interval, cond):
a_t = extract(self.alphas_cumprod, t, x.shape)
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
noise_pred = self.denoise_fn(x, t, cond=cond)
x_prev = a_prev.sqrt() * (
x / a_t.sqrt() + (((1 - a_prev) / a_prev).sqrt() - ((1 - a_t) / a_t).sqrt()) * noise_pred
)
return x_prev
@torch.no_grad()
def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
"""
Use the PLMS method from
[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
"""
def get_x_pred(x, noise_t, t):
a_t = extract(self.alphas_cumprod, t, x.shape)
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
x_pred = x + x_delta
return x_pred
noise_list = self.noise_list
noise_pred = self.denoise_fn(x, t, cond=cond)
if len(noise_list) == 0:
x_pred = get_x_pred(x, noise_pred, t)
noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
noise_pred_prime = (noise_pred + noise_pred_prev) / 2
elif len(noise_list) == 1:
noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
elif len(noise_list) == 2:
noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
else:
noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
x_prev = get_x_pred(x, noise_pred_prime, t)
noise_list.append(noise_pred)
return x_prev
def q_sample(self, x_start, t, noise):
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def p_losses(self, x_start, t, cond, noise=None):
if noise is None:
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_recon = self.denoise_fn(x_noisy, t, cond)
return x_recon, noise
def inference(self, cond, b=1, x_start=None, device=None):
depth = hparams.get('K_step_infer', self.k_step)
speedup = hparams['diff_speedup']
if speedup > 0:
assert depth % speedup == 0, f'Acceleration ratio must be a factor of diffusion depth {depth}.'
noise = torch.randn(b, self.num_feats, self.out_dims, cond.shape[2], device=device)
if self.use_shallow_diffusion:
t_max = min(depth, self.k_step)
else:
t_max = self.k_step
if t_max >= self.timesteps:
x = noise
elif t_max > 0:
assert x_start is not None, 'Missing shallow diffusion source.'
x = self.q_sample(
x_start, torch.full((b,), t_max - 1, device=device, dtype=torch.long), noise
)
else:
assert x_start is not None, 'Missing shallow diffusion source.'
x = x_start
if speedup > 1 and t_max > 0:
algorithm = hparams['diff_accelerator']
if algorithm == 'dpm-solver':
from inference.dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
# 1. Define the noise schedule.
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t_max])
# 2. Convert your discrete-time `model` to the continuous-time
# noise prediction model. Here is an example for a diffusion model
# `model` with the noise prediction type ("noise") .
def my_wrapper(fn):
def wrapped(x, t, **kwargs):
ret = fn(x, t, **kwargs)
self.bar.update(1)
return ret
return wrapped
model_fn = model_wrapper(
my_wrapper(self.denoise_fn),
noise_schedule,
model_type="noise", # or "x_start" or "v" or "score"
model_kwargs={"cond": cond}
)
# 3. Define dpm-solver and sample by singlestep DPM-Solver.
# (We recommend singlestep DPM-Solver for unconditional sampling)
# You can adjust the `steps` to balance the computation
# costs and the sample quality.
dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
steps = t_max // hparams["diff_speedup"]
self.bar = tqdm(desc="sample time step", total=steps, disable=not hparams['infer'], leave=False)
x = dpm_solver.sample(
x,
steps=steps,
order=2,
skip_type="time_uniform",
method="multistep",
)
self.bar.close()
elif algorithm == 'unipc':
from inference.uni_pc import NoiseScheduleVP, model_wrapper, UniPC
# 1. Define the noise schedule.
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t_max])
# 2. Convert your discrete-time `model` to the continuous-time
# noise prediction model. Here is an example for a diffusion model
# `model` with the noise prediction type ("noise") .
def my_wrapper(fn):
def wrapped(x, t, **kwargs):
ret = fn(x, t, **kwargs)
self.bar.update(1)
return ret
return wrapped
model_fn = model_wrapper(
my_wrapper(self.denoise_fn),
noise_schedule,
model_type="noise", # or "x_start" or "v" or "score"
model_kwargs={"cond": cond}
)
# 3. Define uni_pc and sample by multistep UniPC.
# You can adjust the `steps` to balance the computation
# costs and the sample quality.
uni_pc = UniPC(model_fn, noise_schedule, variant='bh2')
steps = t_max // hparams["diff_speedup"]
self.bar = tqdm(desc="sample time step", total=steps, disable=not hparams['infer'], leave=False)
x = uni_pc.sample(
x,
steps=steps,
order=2,
skip_type="time_uniform",
method="multistep",
)
self.bar.close()
elif algorithm == 'pndm':
self.noise_list = deque(maxlen=4)
iteration_interval = speedup
for i in tqdm(
reversed(range(0, t_max, iteration_interval)), desc='sample time step',
total=t_max // iteration_interval, disable=not hparams['infer'], leave=False
):
x = self.p_sample_plms(
x, torch.full((b,), i, device=device, dtype=torch.long),
iteration_interval, cond=cond
)
elif algorithm == 'ddim':
iteration_interval = speedup
for i in tqdm(
reversed(range(0, t_max, iteration_interval)), desc='sample time step',
total=t_max // iteration_interval, disable=not hparams['infer'], leave=False
):
x = self.p_sample_ddim(
x, torch.full((b,), i, device=device, dtype=torch.long),
iteration_interval, cond=cond
)
else:
raise ValueError(f"Unsupported acceleration algorithm for DDPM: {algorithm}.")
else:
for i in tqdm(reversed(range(0, t_max)), desc='sample time step', total=t_max,
disable=not hparams['infer'], leave=False):
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
x = x.transpose(2, 3).squeeze(1) # [B, F, M, T] => [B, T, M] or [B, F, T, M]
return x
def forward(self, condition, gt_spec=None, src_spec=None, infer=True):
"""
conditioning diffusion, use fastspeech2 encoder output as the condition
"""
cond = condition.transpose(1, 2)
b, device = condition.shape[0], condition.device
if not infer:
# gt_spec: [B, T, M] or [B, F, T, M]
spec = self.norm_spec(gt_spec).transpose(-2, -1) # [B, M, T] or [B, F, M, T]
if self.num_feats == 1:
spec = spec[:, None, :, :] # [B, F=1, M, T]
t = torch.randint(0, self.k_step, (b,), device=device).long()
x_recon, noise = self.p_losses(spec, t, cond=cond)
return x_recon, noise
else:
# src_spec: [B, T, M] or [B, F, T, M]
if src_spec is not None:
spec = self.norm_spec(src_spec).transpose(-2, -1)
if self.num_feats == 1:
spec = spec[:, None, :, :]
else:
spec = None
x = self.inference(cond, b=b, x_start=spec, device=device)
return self.denorm_spec(x)
def norm_spec(self, x):
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
def denorm_spec(self, x):
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
class RepetitiveDiffusion(GaussianDiffusion):
def __init__(self, vmin: float | int | list, vmax: float | int | list,
repeat_bins: int, timesteps=1000, k_step=1000,
backbone_type=None, backbone_args=None,
betas=None):
assert (isinstance(vmin, (float, int)) and isinstance(vmin, (float, int))) or len(vmin) == len(vmax)
num_feats = 1 if isinstance(vmin, (float, int)) else len(vmin)
spec_min = [vmin] if num_feats == 1 else [[v] for v in vmin]
spec_max = [vmax] if num_feats == 1 else [[v] for v in vmax]
self.repeat_bins = repeat_bins
super().__init__(
out_dims=repeat_bins, num_feats=num_feats,
timesteps=timesteps, k_step=k_step,
backbone_type=backbone_type, backbone_args=backbone_args,
betas=betas, spec_min=spec_min, spec_max=spec_max
)
def norm_spec(self, x):
"""
:param x: [B, T] or [B, F, T]
:return [B, T, R] or [B, F, T, R]
"""
if self.num_feats == 1:
repeats = [1, 1, self.repeat_bins]
else:
repeats = [1, 1, 1, self.repeat_bins]
return super().norm_spec(x.unsqueeze(-1).repeat(repeats))
def denorm_spec(self, x):
"""
:param x: [B, T, R] or [B, F, T, R]
:return [B, T] or [B, F, T]
"""
return super().denorm_spec(x).mean(dim=-1)
class PitchDiffusion(RepetitiveDiffusion):
def __init__(self, vmin: float, vmax: float,
cmin: float, cmax: float, repeat_bins,
timesteps=1000, k_step=1000,
backbone_type=None, backbone_args=None,
betas=None):
self.vmin = vmin # norm min
self.vmax = vmax # norm max
self.cmin = cmin # clip min
self.cmax = cmax # clip max
super().__init__(
vmin=vmin, vmax=vmax, repeat_bins=repeat_bins,
timesteps=timesteps, k_step=k_step,
backbone_type=backbone_type, backbone_args=backbone_args,
betas=betas
)
def norm_spec(self, x):
return super().norm_spec(x.clamp(min=self.cmin, max=self.cmax))
def denorm_spec(self, x):
return super().denorm_spec(x).clamp(min=self.cmin, max=self.cmax)
class MultiVarianceDiffusion(RepetitiveDiffusion):
def __init__(
self, ranges: List[Tuple[float, float]],
clamps: List[Tuple[float | None, float | None] | None],
repeat_bins, timesteps=1000, k_step=1000,
backbone_type=None, backbone_args=None,
betas=None
):
assert len(ranges) == len(clamps)
self.clamps = clamps
vmin = [r[0] for r in ranges]
vmax = [r[1] for r in ranges]
if len(vmin) == 1:
vmin = vmin[0]
if len(vmax) == 1:
vmax = vmax[0]
super().__init__(
vmin=vmin, vmax=vmax, repeat_bins=repeat_bins,
timesteps=timesteps, k_step=k_step,
backbone_type=backbone_type, backbone_args=backbone_args,
betas=betas
)
def clamp_spec(self, xs: list | tuple):
clamped = []
for x, c in zip(xs, self.clamps):
if c is None:
clamped.append(x)
continue
clamped.append(x.clamp(min=c[0], max=c[1]))
return clamped
def norm_spec(self, xs: list | tuple):
"""
:param xs: sequence of [B, T]
:return: [B, F, T] => super().norm_spec(xs) => [B, F, T, R]
"""
assert len(xs) == self.num_feats
clamped = self.clamp_spec(xs)
xs = torch.stack(clamped, dim=1) # [B, F, T]
if self.num_feats == 1:
xs = xs.squeeze(1) # [B, T]
return super().norm_spec(xs)
def denorm_spec(self, xs):
"""
:param xs: [B, T, R] or [B, F, T, R] => super().denorm_spec(xs) => [B, T] or [B, F, T]
:return: sequence of [B, T]
"""
xs = super().denorm_spec(xs)
if self.num_feats == 1:
xs = [xs]
else:
xs = xs.unbind(dim=1)
assert len(xs) == self.num_feats
return self.clamp_spec(xs)
|