File size: 21,323 Bytes
c42fe7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
from __future__ import annotations

from collections import deque
from functools import partial
from typing import List, Tuple

import numpy as np
import torch
from torch import nn
from tqdm import tqdm

from modules.backbones import build_backbone
from utils.hparams import hparams


def extract(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


def noise_like(shape, device, repeat=False):
    repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
    noise = lambda: torch.randn(shape, device=device)
    return repeat_noise() if repeat else noise()


def linear_beta_schedule(timesteps, max_beta=0.01):
    """
    linear schedule
    """
    betas = np.linspace(1e-4, max_beta, timesteps)
    return betas


def cosine_beta_schedule(timesteps, s=0.008):
    """
    cosine schedule
    as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
    """
    steps = timesteps + 1
    x = np.linspace(0, steps, steps)
    alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    return np.clip(betas, a_min=0, a_max=0.999)


beta_schedule = {
    "cosine": cosine_beta_schedule,
    "linear": linear_beta_schedule,
}


class GaussianDiffusion(nn.Module):
    def __init__(self, out_dims, num_feats=1, timesteps=1000, k_step=1000,
                 backbone_type=None, backbone_args=None, betas=None,
                 spec_min=None, spec_max=None):
        super().__init__()
        self.denoise_fn: nn.Module = build_backbone(out_dims, num_feats, backbone_type, backbone_args)
        self.out_dims = out_dims
        self.num_feats = num_feats

        if betas is not None:
            betas = betas.detach().cpu().numpy() if isinstance(betas, torch.Tensor) else betas
        else:
            betas = beta_schedule[hparams['schedule_type']](timesteps)

        alphas = 1. - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])

        self.use_shallow_diffusion = hparams.get('use_shallow_diffusion', False)
        if self.use_shallow_diffusion:
            assert k_step <= timesteps, 'K_step should not be larger than timesteps.'
        self.timesteps = timesteps
        self.k_step = k_step if self.use_shallow_diffusion else timesteps
        self.noise_list = deque(maxlen=4)

        to_torch = partial(torch.tensor, dtype=torch.float32)

        self.register_buffer('betas', to_torch(betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
        self.register_buffer('posterior_variance', to_torch(posterior_variance))
        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
        self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
        self.register_buffer('posterior_mean_coef1', to_torch(
            betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
        self.register_buffer('posterior_mean_coef2', to_torch(
            (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))

        # spec: [B, T, M] or [B, F, T, M]
        # spec_min and spec_max: [1, 1, M] or [1, 1, F, M] => transpose(-3, -2) => [1, 1, M] or [1, F, 1, M]
        spec_min = torch.FloatTensor(spec_min)[None, None, :out_dims].transpose(-3, -2)
        spec_max = torch.FloatTensor(spec_max)[None, None, :out_dims].transpose(-3, -2)
        self.register_buffer('spec_min', spec_min)
        self.register_buffer('spec_max', spec_max)

        # for compatibility with ONNX continuous acceleration
        self.time_scale_factor = self.timesteps
        self.t_start = 1 - self.k_step / self.timesteps
        factors = torch.LongTensor([i for i in range(1, self.timesteps + 1) if self.timesteps % i == 0])
        self.register_buffer('timestep_factors', factors, persistent=False)

    def q_mean_variance(self, x_start, t):
        mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
        variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
        log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
        return mean, variance, log_variance

    def predict_start_from_noise(self, x_t, t, noise):
        return (
                extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
                extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
        )

    def q_posterior(self, x_start, x_t, t):
        posterior_mean = (
                extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
                extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = extract(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def p_mean_variance(self, x, t, cond):
        noise_pred = self.denoise_fn(x, t, cond=cond)
        x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)

        # This is previously inherited from original DiffSinger repository
        # and disabled due to some loudness issues when speedup = 1.
        # x_recon.clamp_(-1., 1.)

        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
        return model_mean, posterior_variance, posterior_log_variance

    @torch.no_grad()
    def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
        b, *_, device = *x.shape, x.device
        model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
        noise = noise_like(x.shape, device, repeat_noise)
        # no noise when t == 0
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise

    @torch.no_grad()
    def p_sample_ddim(self, x, t, interval, cond):
        a_t = extract(self.alphas_cumprod, t, x.shape)
        a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)

        noise_pred = self.denoise_fn(x, t, cond=cond)
        x_prev = a_prev.sqrt() * (
                x / a_t.sqrt() + (((1 - a_prev) / a_prev).sqrt() - ((1 - a_t) / a_t).sqrt()) * noise_pred
        )
        return x_prev

    @torch.no_grad()
    def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
        """
        Use the PLMS method from
        [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
        """

        def get_x_pred(x, noise_t, t):
            a_t = extract(self.alphas_cumprod, t, x.shape)
            a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
            a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()

            x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
                    a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
            x_pred = x + x_delta

            return x_pred

        noise_list = self.noise_list
        noise_pred = self.denoise_fn(x, t, cond=cond)

        if len(noise_list) == 0:
            x_pred = get_x_pred(x, noise_pred, t)
            noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
            noise_pred_prime = (noise_pred + noise_pred_prev) / 2
        elif len(noise_list) == 1:
            noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
        elif len(noise_list) == 2:
            noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
        else:
            noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24

        x_prev = get_x_pred(x, noise_pred_prime, t)
        noise_list.append(noise_pred)

        return x_prev

    def q_sample(self, x_start, t, noise):
        return (
                extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
                extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
        )

    def p_losses(self, x_start, t, cond, noise=None):
        if noise is None:
            noise = torch.randn_like(x_start)

        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
        x_recon = self.denoise_fn(x_noisy, t, cond)

        return x_recon, noise

    def inference(self, cond, b=1, x_start=None, device=None):
        depth = hparams.get('K_step_infer', self.k_step)
        speedup = hparams['diff_speedup']
        if speedup > 0:
            assert depth % speedup == 0, f'Acceleration ratio must be a factor of diffusion depth {depth}.'

        noise = torch.randn(b, self.num_feats, self.out_dims, cond.shape[2], device=device)
        if self.use_shallow_diffusion:
            t_max = min(depth, self.k_step)
        else:
            t_max = self.k_step

        if t_max >= self.timesteps:
            x = noise
        elif t_max > 0:
            assert x_start is not None, 'Missing shallow diffusion source.'
            x = self.q_sample(
                x_start, torch.full((b,), t_max - 1, device=device, dtype=torch.long), noise
            )
        else:
            assert x_start is not None, 'Missing shallow diffusion source.'
            x = x_start

        if speedup > 1 and t_max > 0:
            algorithm = hparams['diff_accelerator']
            if algorithm == 'dpm-solver':
                from inference.dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
                # 1. Define the noise schedule.
                noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t_max])

                # 2. Convert your discrete-time `model` to the continuous-time
                # noise prediction model. Here is an example for a diffusion model
                # `model` with the noise prediction type ("noise") .
                def my_wrapper(fn):
                    def wrapped(x, t, **kwargs):
                        ret = fn(x, t, **kwargs)
                        self.bar.update(1)
                        return ret

                    return wrapped

                model_fn = model_wrapper(
                    my_wrapper(self.denoise_fn),
                    noise_schedule,
                    model_type="noise",  # or "x_start" or "v" or "score"
                    model_kwargs={"cond": cond}
                )

                # 3. Define dpm-solver and sample by singlestep DPM-Solver.
                # (We recommend singlestep DPM-Solver for unconditional sampling)
                # You can adjust the `steps` to balance the computation
                # costs and the sample quality.
                dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")

                steps = t_max // hparams["diff_speedup"]
                self.bar = tqdm(desc="sample time step", total=steps, disable=not hparams['infer'], leave=False)
                x = dpm_solver.sample(
                    x,
                    steps=steps,
                    order=2,
                    skip_type="time_uniform",
                    method="multistep",
                )
                self.bar.close()
            elif algorithm == 'unipc':
                from inference.uni_pc import NoiseScheduleVP, model_wrapper, UniPC
                # 1. Define the noise schedule.
                noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t_max])

                # 2. Convert your discrete-time `model` to the continuous-time
                # noise prediction model. Here is an example for a diffusion model
                # `model` with the noise prediction type ("noise") .
                def my_wrapper(fn):
                    def wrapped(x, t, **kwargs):
                        ret = fn(x, t, **kwargs)
                        self.bar.update(1)
                        return ret

                    return wrapped

                model_fn = model_wrapper(
                    my_wrapper(self.denoise_fn),
                    noise_schedule,
                    model_type="noise",  # or "x_start" or "v" or "score"
                    model_kwargs={"cond": cond}
                )

                # 3. Define uni_pc and sample by multistep UniPC.
                # You can adjust the `steps` to balance the computation
                # costs and the sample quality.
                uni_pc = UniPC(model_fn, noise_schedule, variant='bh2')

                steps = t_max // hparams["diff_speedup"]
                self.bar = tqdm(desc="sample time step", total=steps, disable=not hparams['infer'], leave=False)
                x = uni_pc.sample(
                    x,
                    steps=steps,
                    order=2,
                    skip_type="time_uniform",
                    method="multistep",
                )
                self.bar.close()
            elif algorithm == 'pndm':
                self.noise_list = deque(maxlen=4)
                iteration_interval = speedup
                for i in tqdm(
                        reversed(range(0, t_max, iteration_interval)), desc='sample time step',
                        total=t_max // iteration_interval, disable=not hparams['infer'], leave=False
                ):
                    x = self.p_sample_plms(
                        x, torch.full((b,), i, device=device, dtype=torch.long),
                        iteration_interval, cond=cond
                    )
            elif algorithm == 'ddim':
                iteration_interval = speedup
                for i in tqdm(
                        reversed(range(0, t_max, iteration_interval)), desc='sample time step',
                        total=t_max // iteration_interval, disable=not hparams['infer'], leave=False
                ):
                    x = self.p_sample_ddim(
                        x, torch.full((b,), i, device=device, dtype=torch.long),
                        iteration_interval, cond=cond
                    )
            else:
                raise ValueError(f"Unsupported acceleration algorithm for DDPM: {algorithm}.")
        else:
            for i in tqdm(reversed(range(0, t_max)), desc='sample time step', total=t_max,
                          disable=not hparams['infer'], leave=False):
                x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
        x = x.transpose(2, 3).squeeze(1)  # [B, F, M, T] => [B, T, M] or [B, F, T, M]
        return x

    def forward(self, condition, gt_spec=None, src_spec=None, infer=True):
        """
            conditioning diffusion, use fastspeech2 encoder output as the condition
        """
        cond = condition.transpose(1, 2)
        b, device = condition.shape[0], condition.device

        if not infer:
            # gt_spec: [B, T, M] or [B, F, T, M]
            spec = self.norm_spec(gt_spec).transpose(-2, -1)  # [B, M, T] or [B, F, M, T]
            if self.num_feats == 1:
                spec = spec[:, None, :, :]  # [B, F=1, M, T]
            t = torch.randint(0, self.k_step, (b,), device=device).long()
            x_recon, noise = self.p_losses(spec, t, cond=cond)
            return x_recon, noise
        else:
            # src_spec: [B, T, M] or [B, F, T, M]
            if src_spec is not None:
                spec = self.norm_spec(src_spec).transpose(-2, -1)
                if self.num_feats == 1:
                    spec = spec[:, None, :, :]
            else:
                spec = None
            x = self.inference(cond, b=b, x_start=spec, device=device)
            return self.denorm_spec(x)

    def norm_spec(self, x):
        return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1

    def denorm_spec(self, x):
        return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min


class RepetitiveDiffusion(GaussianDiffusion):
    def __init__(self, vmin: float | int | list, vmax: float | int | list,
                 repeat_bins: int, timesteps=1000, k_step=1000,
                 backbone_type=None, backbone_args=None,
                 betas=None):
        assert (isinstance(vmin, (float, int)) and isinstance(vmin, (float, int))) or len(vmin) == len(vmax)
        num_feats = 1 if isinstance(vmin, (float, int)) else len(vmin)
        spec_min = [vmin] if num_feats == 1 else [[v] for v in vmin]
        spec_max = [vmax] if num_feats == 1 else [[v] for v in vmax]
        self.repeat_bins = repeat_bins
        super().__init__(
            out_dims=repeat_bins, num_feats=num_feats,
            timesteps=timesteps, k_step=k_step,
            backbone_type=backbone_type, backbone_args=backbone_args,
            betas=betas, spec_min=spec_min, spec_max=spec_max
        )

    def norm_spec(self, x):
        """

        :param x: [B, T] or [B, F, T]
        :return [B, T, R] or [B, F, T, R]
        """
        if self.num_feats == 1:
            repeats = [1, 1, self.repeat_bins]
        else:
            repeats = [1, 1, 1, self.repeat_bins]
        return super().norm_spec(x.unsqueeze(-1).repeat(repeats))

    def denorm_spec(self, x):
        """

        :param x: [B, T, R] or [B, F, T, R]
        :return [B, T] or [B, F, T]
        """
        return super().denorm_spec(x).mean(dim=-1)


class PitchDiffusion(RepetitiveDiffusion):
    def __init__(self, vmin: float, vmax: float,
                 cmin: float, cmax: float, repeat_bins,
                 timesteps=1000, k_step=1000,
                 backbone_type=None, backbone_args=None,
                 betas=None):
        self.vmin = vmin  # norm min
        self.vmax = vmax  # norm max
        self.cmin = cmin  # clip min
        self.cmax = cmax  # clip max
        super().__init__(
            vmin=vmin, vmax=vmax, repeat_bins=repeat_bins,
            timesteps=timesteps, k_step=k_step,
            backbone_type=backbone_type, backbone_args=backbone_args,
            betas=betas
        )

    def norm_spec(self, x):
        return super().norm_spec(x.clamp(min=self.cmin, max=self.cmax))

    def denorm_spec(self, x):
        return super().denorm_spec(x).clamp(min=self.cmin, max=self.cmax)


class MultiVarianceDiffusion(RepetitiveDiffusion):
    def __init__(
            self, ranges: List[Tuple[float, float]],
            clamps: List[Tuple[float | None, float | None] | None],
            repeat_bins, timesteps=1000, k_step=1000,
            backbone_type=None, backbone_args=None,
            betas=None
    ):
        assert len(ranges) == len(clamps)
        self.clamps = clamps
        vmin = [r[0] for r in ranges]
        vmax = [r[1] for r in ranges]
        if len(vmin) == 1:
            vmin = vmin[0]
        if len(vmax) == 1:
            vmax = vmax[0]
        super().__init__(
            vmin=vmin, vmax=vmax, repeat_bins=repeat_bins,
            timesteps=timesteps, k_step=k_step,
            backbone_type=backbone_type, backbone_args=backbone_args,
            betas=betas
        )

    def clamp_spec(self, xs: list | tuple):
        clamped = []
        for x, c in zip(xs, self.clamps):
            if c is None:
                clamped.append(x)
                continue
            clamped.append(x.clamp(min=c[0], max=c[1]))
        return clamped

    def norm_spec(self, xs: list | tuple):
        """

        :param xs: sequence of [B, T]
        :return: [B, F, T] => super().norm_spec(xs) => [B, F, T, R]
        """
        assert len(xs) == self.num_feats
        clamped = self.clamp_spec(xs)
        xs = torch.stack(clamped, dim=1)  # [B, F, T]
        if self.num_feats == 1:
            xs = xs.squeeze(1)  # [B, T]
        return super().norm_spec(xs)

    def denorm_spec(self, xs):
        """

        :param xs: [B, T, R] or [B, F, T, R] => super().denorm_spec(xs) => [B, T] or [B, F, T]
        :return: sequence of [B, T]
        """
        xs = super().denorm_spec(xs)
        if self.num_feats == 1:
            xs = [xs]
        else:
            xs = xs.unbind(dim=1)
        assert len(xs) == self.num_feats
        return self.clamp_spec(xs)