Spaces:
Runtime error
Runtime error
File size: 6,596 Bytes
c850717 962d9e1 c850717 e761553 c850717 68dbb2b c850717 bb5ae00 c850717 dc44445 c850717 dc44445 f0fac46 8c67f44 61e3a2e fc970ed b174ce6 dc44445 a3c8610 dc44445 c850717 dc44445 89c3cca dc44445 89c3cca 8c67f44 dc44445 89c3cca f2ea1f4 89c3cca f2ea1f4 3a5b465 89c3cca f2ea1f4 68dbb2b 3a5b465 cb667ba 89c3cca 68dbb2b f0fac46 dc44445 3a5b465 c850717 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
## Imports
import pickle
import warnings
import streamlit as st
from pathlib import Path
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import datetime
import torch
from torch.distributions import Normal
from pytorch_forecasting import (
TimeSeriesDataSet,
TemporalFusionTransformer,
)
## Functions
def raw_preds_to_df(raw,quantiles = None):
"""
raw is output of model.predict with return_index=True
quantiles can be provided like [0.1,0.5,0.9] to get interpretable quantiles
in the output, time_idx is the first prediction time index (one step after knowledge cutoff)
pred_idx the index of the predicted date i.e. time_idx + h - 1
"""
index = raw[2]
preds = raw[0].prediction
dec_len = preds.shape[1]
n_quantiles = preds.shape[-1]
preds_df = pd.DataFrame(index.values.repeat(dec_len * n_quantiles, axis=0),columns=index.columns)
preds_df = preds_df.assign(h=np.tile(np.repeat(np.arange(1,1+dec_len),n_quantiles),len(preds_df)//(dec_len*n_quantiles)))
preds_df = preds_df.assign(q=np.tile(np.arange(n_quantiles),len(preds_df)//n_quantiles))
preds_df = preds_df.assign(pred=preds.flatten().numpy())
if quantiles is not None:
preds_df['q'] = preds_df['q'].map({i:q for i,q in enumerate(quantiles)})
preds_df['pred_idx'] = preds_df['time_idx'] + preds_df['h'] - 1
return preds_df
def prepare_dataset(parameters, df, rain, temperature, datepicker, mapping):
if rain != "Default":
df["MTXWTH_Day_precip"] = rain_mapping[rain]
df["MTXWTH_Temp_min"] = df["MTXWTH_Temp_min"] + temperature
df["MTXWTH_Temp_max"] = df["MTXWTH_Temp_max"] + temperature
lowerbound = datepicker - datetime.timedelta(days = 35)
upperbound = datepicker + datetime.timedelta(days = 30)
df = df.loc[(df["Date"].dt.date>lowerbound) & (df["Date"].dt.date<=upperbound)]
df = TimeSeriesDataSet.from_parameters(parameters, df)
return df.to_dataloader(train=False, batch_size=256,num_workers = 0)
@st.cache_data
def predict(_model, _dataloader, datepicker):
out = _model.predict(_dataloader, mode="raw", return_x=True, return_index=True)
preds = raw_preds_to_df(out, quantiles = None)
def add_dates(group):
group["date_imputed"] = [datepicker + datetime.timedelta(days=x) for x in range(30)]
return group
preds["date_imputed"] = preds.groupby("Group").pred.transform(add_dates)
return preds[["date_imputed", "Group", "pred"]]
def generate_plot(df, preds):
fig, axs = plt.subplots(2, 2, figsize=(8, 6))
df = pd.merge(df, pred, left_on='Date', right_on='date_imputed')
# Plot scatter plots for each group
axs[0, 0].scatter(df.loc[df['Group'] == '4', 'Date'], df.loc[df['Group'] == '4', 'sales'], color='grey', marker='o')
axs[0, 0].plot(df.loc[df['Group'] == '4', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
axs[0, 0].set_title('Article Group 1')
axs[0, 1].scatter(df.loc[df['Group'] == '7', 'Date'], df.loc[df['Group'] == '7', 'sales'], color='blue', marker='o')
axs[0, 1].set_title('Article Group 2')
axs[1, 0].scatter(df.loc[df['Group'] == '1', 'Date'], df.loc[df['Group'] == '1', 'sales'], color='green', marker='o')
axs[1, 0].set_title('Article Group 3')
axs[1, 1].scatter(df.loc[df['Group'] == '6', 'Date'], df.loc[df['Group'] == '6', 'sales'], color='yellow', marker='o')
axs[1, 1].set_title('Article Group 4')
# Adjust spacing between subplots
plt.tight_layout()
#for ax in axs.flat:
# ax.set_xlim(df['Date'].min(), df['Date'].max())
# ax.set_ylim(df['sales'].min(), df['sales'].max())
st.pyplot(fig)
@st.cache_data
def load_data():
with open('data/parameters.pkl', 'rb') as f:
parameters = pickle.load(f)
df = pd.read_pickle('data/test_data.pkl')
df = df.loc[(df["Branch"] == "15") & (df["Group"].isin(["6","7","4","1"]))]
return parameters, df
@st.cache_resource
def init_model():
model = TemporalFusionTransformer.load_from_checkpoint('model/tft_check.ckpt', map_location=torch.device('cpu'))
return model
def main():
## Initiate Data
parameters, df = load_data()
model = init_model()
rain_mapping = {
"Yes" : 1,
"No" : 0
}
# Start App
st.title("Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting")
st.markdown(body = """
### Abstract
Multi-horizon forecasting often contains a complex mix of inputs – including
static (i.e. time-invariant) covariates, known future inputs, and other exogenous
time series that are only observed in the past – without any prior information
on how they interact with the target. Several deep learning methods have been
proposed, but they are typically ‘black-box’ models which do not shed light on
how they use the full range of inputs present in practical scenarios. In this pa-
per, we introduce the Temporal Fusion Transformer (TFT) – a novel attention-
based architecture which combines high-performance multi-horizon forecasting
with interpretable insights into temporal dynamics. To learn temporal rela-
tionships at different scales, TFT uses recurrent layers for local processing and
interpretable self-attention layers for long-term dependencies. TFT utilizes spe-
cialized components to select relevant features and a series of gating layers to
suppress unnecessary components, enabling high performance in a wide range of
scenarios. On a variety of real-world datasets, we demonstrate significant per-
formance improvements over existing benchmarks, and showcase three practical
interpretability use cases of TFT.
### Experiments
""")
st.write(df.head(5))
rain = st.radio("Rain Indicator", ('Default', 'Yes', 'No'))
temperature = st.slider('Change in Temperature', min_value=-10.0, max_value=10.0, value=0.0, step=0.25)
datepicker = st.date_input("Start of Forecast", datetime.date(2022, 12, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30))
if st.button("Forecast Sales", type="primary"):
dataloader = prepare_dataset(parameters, df, rain, temperature, datepicker, rain_mapping)
preds = predict(model, dataloader, datepicker)
generate_plot(df, preds)
if __name__ == '__main__':
main()
|