Spaces:
Runtime error
Runtime error
init
Browse files- .DS_Store +0 -0
- .gitattributes +3 -0
- Untitled.ipynb +509 -0
- app.py +116 -0
- data/.DS_Store +0 -0
- data/parameters.pkl +3 -0
- data/test_data.pkl +3 -0
- model/.DS_Store +0 -0
- model/tft_check.ckpt +3 -0
- requirements.txt +109 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
data/parameters.pkl filter=lfs diff=lfs merge=lfs -text
|
37 |
+
data/test_data.pkl filter=lfs diff=lfs merge=lfs -text
|
38 |
+
model/tft_check.ckpt filter=lfs diff=lfs merge=lfs -text
|
Untitled.ipynb
ADDED
@@ -0,0 +1,509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 18,
|
6 |
+
"id": "40d0c64c-1de1-47ed-aa66-7b28d9e8fd1f",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pickle \n",
|
11 |
+
"import pandas as pd \n",
|
12 |
+
"import datetime"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": 13,
|
18 |
+
"id": "5043d237-0287-4705-bfd5-73b880b36def",
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"df = pd.read_pickle('data/test_data.pkl')\n",
|
23 |
+
"df = df.loc[(df[\"Branch\"] == \"15\") & (df[\"Group\"].isin([\"6\",\"7\",\"4\",\"1\"]))]"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 14,
|
29 |
+
"id": "dce8096f-23d4-4075-8654-6693632c45bc",
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [
|
32 |
+
{
|
33 |
+
"data": {
|
34 |
+
"text/html": [
|
35 |
+
"<div>\n",
|
36 |
+
"<style scoped>\n",
|
37 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
38 |
+
" vertical-align: middle;\n",
|
39 |
+
" }\n",
|
40 |
+
"\n",
|
41 |
+
" .dataframe tbody tr th {\n",
|
42 |
+
" vertical-align: top;\n",
|
43 |
+
" }\n",
|
44 |
+
"\n",
|
45 |
+
" .dataframe thead th {\n",
|
46 |
+
" text-align: right;\n",
|
47 |
+
" }\n",
|
48 |
+
"</style>\n",
|
49 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
50 |
+
" <thead>\n",
|
51 |
+
" <tr style=\"text-align: right;\">\n",
|
52 |
+
" <th></th>\n",
|
53 |
+
" <th>sales</th>\n",
|
54 |
+
" <th>DayInYear</th>\n",
|
55 |
+
" <th>time_idx</th>\n",
|
56 |
+
" <th>Wahl</th>\n",
|
57 |
+
" <th>Baustelle</th>\n",
|
58 |
+
" <th>MontagLangesWE</th>\n",
|
59 |
+
" <th>FreitagLangesWE</th>\n",
|
60 |
+
" <th>nosale</th>\n",
|
61 |
+
" <th>holiday</th>\n",
|
62 |
+
" <th>AufSommerzeit</th>\n",
|
63 |
+
" <th>...</th>\n",
|
64 |
+
" <th>Branch</th>\n",
|
65 |
+
" <th>Weekday</th>\n",
|
66 |
+
" <th>Date</th>\n",
|
67 |
+
" <th>MTXWTH_Day_precip</th>\n",
|
68 |
+
" <th>MTXWTH_Temp_max</th>\n",
|
69 |
+
" <th>MTXWTH_Temp_min</th>\n",
|
70 |
+
" <th>Start</th>\n",
|
71 |
+
" <th>End</th>\n",
|
72 |
+
" <th>ShiftLength</th>\n",
|
73 |
+
" <th>weight</th>\n",
|
74 |
+
" </tr>\n",
|
75 |
+
" </thead>\n",
|
76 |
+
" <tbody>\n",
|
77 |
+
" <tr>\n",
|
78 |
+
" <th>270300</th>\n",
|
79 |
+
" <td>1600.9030</td>\n",
|
80 |
+
" <td>177</td>\n",
|
81 |
+
" <td>2369</td>\n",
|
82 |
+
" <td>0.0</td>\n",
|
83 |
+
" <td>0.0</td>\n",
|
84 |
+
" <td>0.0</td>\n",
|
85 |
+
" <td>0.0</td>\n",
|
86 |
+
" <td>0</td>\n",
|
87 |
+
" <td>none</td>\n",
|
88 |
+
" <td>0.0</td>\n",
|
89 |
+
" <td>...</td>\n",
|
90 |
+
" <td>15</td>\n",
|
91 |
+
" <td>6</td>\n",
|
92 |
+
" <td>2022-06-26</td>\n",
|
93 |
+
" <td>0.0</td>\n",
|
94 |
+
" <td>28.52</td>\n",
|
95 |
+
" <td>17.47</td>\n",
|
96 |
+
" <td>7.0</td>\n",
|
97 |
+
" <td>10.983333</td>\n",
|
98 |
+
" <td>240.0</td>\n",
|
99 |
+
" <td>1</td>\n",
|
100 |
+
" </tr>\n",
|
101 |
+
" <tr>\n",
|
102 |
+
" <th>270301</th>\n",
|
103 |
+
" <td>1811.1958</td>\n",
|
104 |
+
" <td>178</td>\n",
|
105 |
+
" <td>2370</td>\n",
|
106 |
+
" <td>0.0</td>\n",
|
107 |
+
" <td>0.0</td>\n",
|
108 |
+
" <td>0.0</td>\n",
|
109 |
+
" <td>0.0</td>\n",
|
110 |
+
" <td>0</td>\n",
|
111 |
+
" <td>none</td>\n",
|
112 |
+
" <td>0.0</td>\n",
|
113 |
+
" <td>...</td>\n",
|
114 |
+
" <td>15</td>\n",
|
115 |
+
" <td>0</td>\n",
|
116 |
+
" <td>2022-06-27</td>\n",
|
117 |
+
" <td>0.0</td>\n",
|
118 |
+
" <td>25.75</td>\n",
|
119 |
+
" <td>16.70</td>\n",
|
120 |
+
" <td>6.0</td>\n",
|
121 |
+
" <td>13.983333</td>\n",
|
122 |
+
" <td>480.0</td>\n",
|
123 |
+
" <td>1</td>\n",
|
124 |
+
" </tr>\n",
|
125 |
+
" <tr>\n",
|
126 |
+
" <th>270302</th>\n",
|
127 |
+
" <td>1784.2916</td>\n",
|
128 |
+
" <td>179</td>\n",
|
129 |
+
" <td>2371</td>\n",
|
130 |
+
" <td>0.0</td>\n",
|
131 |
+
" <td>0.0</td>\n",
|
132 |
+
" <td>0.0</td>\n",
|
133 |
+
" <td>0.0</td>\n",
|
134 |
+
" <td>0</td>\n",
|
135 |
+
" <td>none</td>\n",
|
136 |
+
" <td>0.0</td>\n",
|
137 |
+
" <td>...</td>\n",
|
138 |
+
" <td>15</td>\n",
|
139 |
+
" <td>1</td>\n",
|
140 |
+
" <td>2022-06-28</td>\n",
|
141 |
+
" <td>0.0</td>\n",
|
142 |
+
" <td>23.57</td>\n",
|
143 |
+
" <td>14.17</td>\n",
|
144 |
+
" <td>6.0</td>\n",
|
145 |
+
" <td>13.983333</td>\n",
|
146 |
+
" <td>480.0</td>\n",
|
147 |
+
" <td>1</td>\n",
|
148 |
+
" </tr>\n",
|
149 |
+
" <tr>\n",
|
150 |
+
" <th>270303</th>\n",
|
151 |
+
" <td>1757.3488</td>\n",
|
152 |
+
" <td>180</td>\n",
|
153 |
+
" <td>2372</td>\n",
|
154 |
+
" <td>0.0</td>\n",
|
155 |
+
" <td>0.0</td>\n",
|
156 |
+
" <td>0.0</td>\n",
|
157 |
+
" <td>0.0</td>\n",
|
158 |
+
" <td>0</td>\n",
|
159 |
+
" <td>none</td>\n",
|
160 |
+
" <td>0.0</td>\n",
|
161 |
+
" <td>...</td>\n",
|
162 |
+
" <td>15</td>\n",
|
163 |
+
" <td>2</td>\n",
|
164 |
+
" <td>2022-06-29</td>\n",
|
165 |
+
" <td>0.0</td>\n",
|
166 |
+
" <td>26.81</td>\n",
|
167 |
+
" <td>13.09</td>\n",
|
168 |
+
" <td>6.0</td>\n",
|
169 |
+
" <td>13.983333</td>\n",
|
170 |
+
" <td>480.0</td>\n",
|
171 |
+
" <td>1</td>\n",
|
172 |
+
" </tr>\n",
|
173 |
+
" <tr>\n",
|
174 |
+
" <th>270304</th>\n",
|
175 |
+
" <td>1741.0982</td>\n",
|
176 |
+
" <td>181</td>\n",
|
177 |
+
" <td>2373</td>\n",
|
178 |
+
" <td>0.0</td>\n",
|
179 |
+
" <td>0.0</td>\n",
|
180 |
+
" <td>0.0</td>\n",
|
181 |
+
" <td>0.0</td>\n",
|
182 |
+
" <td>0</td>\n",
|
183 |
+
" <td>none</td>\n",
|
184 |
+
" <td>0.0</td>\n",
|
185 |
+
" <td>...</td>\n",
|
186 |
+
" <td>15</td>\n",
|
187 |
+
" <td>3</td>\n",
|
188 |
+
" <td>2022-06-30</td>\n",
|
189 |
+
" <td>0.0</td>\n",
|
190 |
+
" <td>27.26</td>\n",
|
191 |
+
" <td>15.00</td>\n",
|
192 |
+
" <td>6.0</td>\n",
|
193 |
+
" <td>13.983333</td>\n",
|
194 |
+
" <td>480.0</td>\n",
|
195 |
+
" <td>1</td>\n",
|
196 |
+
" </tr>\n",
|
197 |
+
" <tr>\n",
|
198 |
+
" <th>...</th>\n",
|
199 |
+
" <td>...</td>\n",
|
200 |
+
" <td>...</td>\n",
|
201 |
+
" <td>...</td>\n",
|
202 |
+
" <td>...</td>\n",
|
203 |
+
" <td>...</td>\n",
|
204 |
+
" <td>...</td>\n",
|
205 |
+
" <td>...</td>\n",
|
206 |
+
" <td>...</td>\n",
|
207 |
+
" <td>...</td>\n",
|
208 |
+
" <td>...</td>\n",
|
209 |
+
" <td>...</td>\n",
|
210 |
+
" <td>...</td>\n",
|
211 |
+
" <td>...</td>\n",
|
212 |
+
" <td>...</td>\n",
|
213 |
+
" <td>...</td>\n",
|
214 |
+
" <td>...</td>\n",
|
215 |
+
" <td>...</td>\n",
|
216 |
+
" <td>...</td>\n",
|
217 |
+
" <td>...</td>\n",
|
218 |
+
" <td>...</td>\n",
|
219 |
+
" <td>...</td>\n",
|
220 |
+
" </tr>\n",
|
221 |
+
" <tr>\n",
|
222 |
+
" <th>287065</th>\n",
|
223 |
+
" <td>1643.1700</td>\n",
|
224 |
+
" <td>173</td>\n",
|
225 |
+
" <td>2730</td>\n",
|
226 |
+
" <td>0.0</td>\n",
|
227 |
+
" <td>0.0</td>\n",
|
228 |
+
" <td>0.0</td>\n",
|
229 |
+
" <td>0.0</td>\n",
|
230 |
+
" <td>0</td>\n",
|
231 |
+
" <td>none</td>\n",
|
232 |
+
" <td>0.0</td>\n",
|
233 |
+
" <td>...</td>\n",
|
234 |
+
" <td>15</td>\n",
|
235 |
+
" <td>3</td>\n",
|
236 |
+
" <td>2023-06-22</td>\n",
|
237 |
+
" <td>0.0</td>\n",
|
238 |
+
" <td>26.93</td>\n",
|
239 |
+
" <td>13.06</td>\n",
|
240 |
+
" <td>6.0</td>\n",
|
241 |
+
" <td>16.983333</td>\n",
|
242 |
+
" <td>660.0</td>\n",
|
243 |
+
" <td>1</td>\n",
|
244 |
+
" </tr>\n",
|
245 |
+
" <tr>\n",
|
246 |
+
" <th>287066</th>\n",
|
247 |
+
" <td>1597.3518</td>\n",
|
248 |
+
" <td>174</td>\n",
|
249 |
+
" <td>2731</td>\n",
|
250 |
+
" <td>0.0</td>\n",
|
251 |
+
" <td>0.0</td>\n",
|
252 |
+
" <td>0.0</td>\n",
|
253 |
+
" <td>0.0</td>\n",
|
254 |
+
" <td>0</td>\n",
|
255 |
+
" <td>none</td>\n",
|
256 |
+
" <td>0.0</td>\n",
|
257 |
+
" <td>...</td>\n",
|
258 |
+
" <td>15</td>\n",
|
259 |
+
" <td>4</td>\n",
|
260 |
+
" <td>2023-06-23</td>\n",
|
261 |
+
" <td>1.0</td>\n",
|
262 |
+
" <td>23.99</td>\n",
|
263 |
+
" <td>15.98</td>\n",
|
264 |
+
" <td>6.0</td>\n",
|
265 |
+
" <td>16.983333</td>\n",
|
266 |
+
" <td>660.0</td>\n",
|
267 |
+
" <td>1</td>\n",
|
268 |
+
" </tr>\n",
|
269 |
+
" <tr>\n",
|
270 |
+
" <th>287067</th>\n",
|
271 |
+
" <td>1683.6228</td>\n",
|
272 |
+
" <td>175</td>\n",
|
273 |
+
" <td>2732</td>\n",
|
274 |
+
" <td>0.0</td>\n",
|
275 |
+
" <td>0.0</td>\n",
|
276 |
+
" <td>0.0</td>\n",
|
277 |
+
" <td>0.0</td>\n",
|
278 |
+
" <td>0</td>\n",
|
279 |
+
" <td>none</td>\n",
|
280 |
+
" <td>0.0</td>\n",
|
281 |
+
" <td>...</td>\n",
|
282 |
+
" <td>15</td>\n",
|
283 |
+
" <td>5</td>\n",
|
284 |
+
" <td>2023-06-24</td>\n",
|
285 |
+
" <td>0.0</td>\n",
|
286 |
+
" <td>25.99</td>\n",
|
287 |
+
" <td>12.04</td>\n",
|
288 |
+
" <td>6.0</td>\n",
|
289 |
+
" <td>15.983333</td>\n",
|
290 |
+
" <td>600.0</td>\n",
|
291 |
+
" <td>1</td>\n",
|
292 |
+
" </tr>\n",
|
293 |
+
" <tr>\n",
|
294 |
+
" <th>287068</th>\n",
|
295 |
+
" <td>1785.2180</td>\n",
|
296 |
+
" <td>176</td>\n",
|
297 |
+
" <td>2733</td>\n",
|
298 |
+
" <td>0.0</td>\n",
|
299 |
+
" <td>0.0</td>\n",
|
300 |
+
" <td>0.0</td>\n",
|
301 |
+
" <td>0.0</td>\n",
|
302 |
+
" <td>0</td>\n",
|
303 |
+
" <td>none</td>\n",
|
304 |
+
" <td>0.0</td>\n",
|
305 |
+
" <td>...</td>\n",
|
306 |
+
" <td>15</td>\n",
|
307 |
+
" <td>6</td>\n",
|
308 |
+
" <td>2023-06-25</td>\n",
|
309 |
+
" <td>0.0</td>\n",
|
310 |
+
" <td>28.99</td>\n",
|
311 |
+
" <td>15.02</td>\n",
|
312 |
+
" <td>7.0</td>\n",
|
313 |
+
" <td>15.983333</td>\n",
|
314 |
+
" <td>540.0</td>\n",
|
315 |
+
" <td>1</td>\n",
|
316 |
+
" </tr>\n",
|
317 |
+
" <tr>\n",
|
318 |
+
" <th>287069</th>\n",
|
319 |
+
" <td>1589.9020</td>\n",
|
320 |
+
" <td>177</td>\n",
|
321 |
+
" <td>2734</td>\n",
|
322 |
+
" <td>0.0</td>\n",
|
323 |
+
" <td>0.0</td>\n",
|
324 |
+
" <td>0.0</td>\n",
|
325 |
+
" <td>0.0</td>\n",
|
326 |
+
" <td>0</td>\n",
|
327 |
+
" <td>none</td>\n",
|
328 |
+
" <td>0.0</td>\n",
|
329 |
+
" <td>...</td>\n",
|
330 |
+
" <td>15</td>\n",
|
331 |
+
" <td>0</td>\n",
|
332 |
+
" <td>2023-06-26</td>\n",
|
333 |
+
" <td>0.0</td>\n",
|
334 |
+
" <td>27.96</td>\n",
|
335 |
+
" <td>17.01</td>\n",
|
336 |
+
" <td>6.0</td>\n",
|
337 |
+
" <td>16.983333</td>\n",
|
338 |
+
" <td>660.0</td>\n",
|
339 |
+
" <td>1</td>\n",
|
340 |
+
" </tr>\n",
|
341 |
+
" </tbody>\n",
|
342 |
+
"</table>\n",
|
343 |
+
"<p>1464 rows × 22 columns</p>\n",
|
344 |
+
"</div>"
|
345 |
+
],
|
346 |
+
"text/plain": [
|
347 |
+
" sales DayInYear time_idx Wahl Baustelle MontagLangesWE \\\n",
|
348 |
+
"270300 1600.9030 177 2369 0.0 0.0 0.0 \n",
|
349 |
+
"270301 1811.1958 178 2370 0.0 0.0 0.0 \n",
|
350 |
+
"270302 1784.2916 179 2371 0.0 0.0 0.0 \n",
|
351 |
+
"270303 1757.3488 180 2372 0.0 0.0 0.0 \n",
|
352 |
+
"270304 1741.0982 181 2373 0.0 0.0 0.0 \n",
|
353 |
+
"... ... ... ... ... ... ... \n",
|
354 |
+
"287065 1643.1700 173 2730 0.0 0.0 0.0 \n",
|
355 |
+
"287066 1597.3518 174 2731 0.0 0.0 0.0 \n",
|
356 |
+
"287067 1683.6228 175 2732 0.0 0.0 0.0 \n",
|
357 |
+
"287068 1785.2180 176 2733 0.0 0.0 0.0 \n",
|
358 |
+
"287069 1589.9020 177 2734 0.0 0.0 0.0 \n",
|
359 |
+
"\n",
|
360 |
+
" FreitagLangesWE nosale holiday AufSommerzeit ... Branch Weekday \\\n",
|
361 |
+
"270300 0.0 0 none 0.0 ... 15 6 \n",
|
362 |
+
"270301 0.0 0 none 0.0 ... 15 0 \n",
|
363 |
+
"270302 0.0 0 none 0.0 ... 15 1 \n",
|
364 |
+
"270303 0.0 0 none 0.0 ... 15 2 \n",
|
365 |
+
"270304 0.0 0 none 0.0 ... 15 3 \n",
|
366 |
+
"... ... ... ... ... ... ... ... \n",
|
367 |
+
"287065 0.0 0 none 0.0 ... 15 3 \n",
|
368 |
+
"287066 0.0 0 none 0.0 ... 15 4 \n",
|
369 |
+
"287067 0.0 0 none 0.0 ... 15 5 \n",
|
370 |
+
"287068 0.0 0 none 0.0 ... 15 6 \n",
|
371 |
+
"287069 0.0 0 none 0.0 ... 15 0 \n",
|
372 |
+
"\n",
|
373 |
+
" Date MTXWTH_Day_precip MTXWTH_Temp_max MTXWTH_Temp_min Start \\\n",
|
374 |
+
"270300 2022-06-26 0.0 28.52 17.47 7.0 \n",
|
375 |
+
"270301 2022-06-27 0.0 25.75 16.70 6.0 \n",
|
376 |
+
"270302 2022-06-28 0.0 23.57 14.17 6.0 \n",
|
377 |
+
"270303 2022-06-29 0.0 26.81 13.09 6.0 \n",
|
378 |
+
"270304 2022-06-30 0.0 27.26 15.00 6.0 \n",
|
379 |
+
"... ... ... ... ... ... \n",
|
380 |
+
"287065 2023-06-22 0.0 26.93 13.06 6.0 \n",
|
381 |
+
"287066 2023-06-23 1.0 23.99 15.98 6.0 \n",
|
382 |
+
"287067 2023-06-24 0.0 25.99 12.04 6.0 \n",
|
383 |
+
"287068 2023-06-25 0.0 28.99 15.02 7.0 \n",
|
384 |
+
"287069 2023-06-26 0.0 27.96 17.01 6.0 \n",
|
385 |
+
"\n",
|
386 |
+
" End ShiftLength weight \n",
|
387 |
+
"270300 10.983333 240.0 1 \n",
|
388 |
+
"270301 13.983333 480.0 1 \n",
|
389 |
+
"270302 13.983333 480.0 1 \n",
|
390 |
+
"270303 13.983333 480.0 1 \n",
|
391 |
+
"270304 13.983333 480.0 1 \n",
|
392 |
+
"... ... ... ... \n",
|
393 |
+
"287065 16.983333 660.0 1 \n",
|
394 |
+
"287066 16.983333 660.0 1 \n",
|
395 |
+
"287067 15.983333 600.0 1 \n",
|
396 |
+
"287068 15.983333 540.0 1 \n",
|
397 |
+
"287069 16.983333 660.0 1 \n",
|
398 |
+
"\n",
|
399 |
+
"[1464 rows x 22 columns]"
|
400 |
+
]
|
401 |
+
},
|
402 |
+
"execution_count": 14,
|
403 |
+
"metadata": {},
|
404 |
+
"output_type": "execute_result"
|
405 |
+
}
|
406 |
+
],
|
407 |
+
"source": [
|
408 |
+
"df"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"cell_type": "code",
|
413 |
+
"execution_count": 17,
|
414 |
+
"id": "5ea34c2b-fc24-4cfa-ad46-f369bea42364",
|
415 |
+
"metadata": {},
|
416 |
+
"outputs": [
|
417 |
+
{
|
418 |
+
"data": {
|
419 |
+
"text/plain": [
|
420 |
+
"Timestamp('2023-06-26 00:00:00')"
|
421 |
+
]
|
422 |
+
},
|
423 |
+
"execution_count": 17,
|
424 |
+
"metadata": {},
|
425 |
+
"output_type": "execute_result"
|
426 |
+
}
|
427 |
+
],
|
428 |
+
"source": [
|
429 |
+
"max(df[\"Date\"])"
|
430 |
+
]
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"cell_type": "code",
|
434 |
+
"execution_count": 20,
|
435 |
+
"id": "a024d9e3-e018-43fe-9bb0-20b9d9e91b53",
|
436 |
+
"metadata": {},
|
437 |
+
"outputs": [
|
438 |
+
{
|
439 |
+
"data": {
|
440 |
+
"text/plain": [
|
441 |
+
"datetime.date(2023, 5, 27)"
|
442 |
+
]
|
443 |
+
},
|
444 |
+
"execution_count": 20,
|
445 |
+
"metadata": {},
|
446 |
+
"output_type": "execute_result"
|
447 |
+
}
|
448 |
+
],
|
449 |
+
"source": [
|
450 |
+
"datetime.date(2023, 6, 26) - datetime.timedelta(days = 30)"
|
451 |
+
]
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"cell_type": "code",
|
455 |
+
"execution_count": 21,
|
456 |
+
"id": "52e0a2c8-5b53-42f4-91c9-3ca7d6a8d356",
|
457 |
+
"metadata": {},
|
458 |
+
"outputs": [
|
459 |
+
{
|
460 |
+
"data": {
|
461 |
+
"text/plain": [
|
462 |
+
"Index(['sales', 'DayInYear', 'time_idx', 'Wahl', 'Baustelle', 'MontagLangesWE',\n",
|
463 |
+
" 'FreitagLangesWE', 'nosale', 'holiday', 'AufSommerzeit',\n",
|
464 |
+
" 'AufWinterzeit', 'Group', 'Branch', 'Weekday', 'Date',\n",
|
465 |
+
" 'MTXWTH_Day_precip', 'MTXWTH_Temp_max', 'MTXWTH_Temp_min', 'Start',\n",
|
466 |
+
" 'End', 'ShiftLength', 'weight'],\n",
|
467 |
+
" dtype='object')"
|
468 |
+
]
|
469 |
+
},
|
470 |
+
"execution_count": 21,
|
471 |
+
"metadata": {},
|
472 |
+
"output_type": "execute_result"
|
473 |
+
}
|
474 |
+
],
|
475 |
+
"source": [
|
476 |
+
"df.columns"
|
477 |
+
]
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"cell_type": "code",
|
481 |
+
"execution_count": null,
|
482 |
+
"id": "75415b44-41ec-4893-8452-939766ebaabc",
|
483 |
+
"metadata": {},
|
484 |
+
"outputs": [],
|
485 |
+
"source": []
|
486 |
+
}
|
487 |
+
],
|
488 |
+
"metadata": {
|
489 |
+
"kernelspec": {
|
490 |
+
"display_name": "Python 3 (ipykernel)",
|
491 |
+
"language": "python",
|
492 |
+
"name": "python3"
|
493 |
+
},
|
494 |
+
"language_info": {
|
495 |
+
"codemirror_mode": {
|
496 |
+
"name": "ipython",
|
497 |
+
"version": 3
|
498 |
+
},
|
499 |
+
"file_extension": ".py",
|
500 |
+
"mimetype": "text/x-python",
|
501 |
+
"name": "python",
|
502 |
+
"nbconvert_exporter": "python",
|
503 |
+
"pygments_lexer": "ipython3",
|
504 |
+
"version": "3.10.11"
|
505 |
+
}
|
506 |
+
},
|
507 |
+
"nbformat": 4,
|
508 |
+
"nbformat_minor": 5
|
509 |
+
}
|
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Imports
|
2 |
+
import pickle
|
3 |
+
import warnings
|
4 |
+
import streamlit as st
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import datetime
|
11 |
+
|
12 |
+
# import torch
|
13 |
+
from torch.distributions import Normal
|
14 |
+
from pytorch_forecasting import (
|
15 |
+
TimeSeriesDataSet,
|
16 |
+
TemporalFusionTransformer,
|
17 |
+
)
|
18 |
+
|
19 |
+
## Functions
|
20 |
+
def raw_preds_to_df(raw,quantiles = None):
|
21 |
+
"""
|
22 |
+
raw is output of model.predict with return_index=True
|
23 |
+
quantiles can be provided like [0.1,0.5,0.9] to get interpretable quantiles
|
24 |
+
in the output, time_idx is the first prediction time index (one step after knowledge cutoff)
|
25 |
+
pred_idx the index of the predicted date i.e. time_idx + h - 1
|
26 |
+
"""
|
27 |
+
index = raw[2]
|
28 |
+
preds = raw[0].prediction
|
29 |
+
dec_len = preds.shape[1]
|
30 |
+
n_quantiles = preds.shape[-1]
|
31 |
+
preds_df = pd.DataFrame(index.values.repeat(dec_len * n_quantiles, axis=0),columns=index.columns)
|
32 |
+
preds_df = preds_df.assign(h=np.tile(np.repeat(np.arange(1,1+dec_len),n_quantiles),len(preds_df)//(dec_len*n_quantiles)))
|
33 |
+
preds_df = preds_df.assign(q=np.tile(np.arange(n_quantiles),len(preds_df)//n_quantiles))
|
34 |
+
preds_df = preds_df.assign(pred=preds.flatten().cpu().numpy())
|
35 |
+
if quantiles is not None:
|
36 |
+
preds_df['q'] = preds_df['q'].map({i:q for i,q in enumerate(quantiles)})
|
37 |
+
|
38 |
+
preds_df['pred_idx'] = preds_df['time_idx'] + preds_df['h'] - 1
|
39 |
+
return preds_df
|
40 |
+
|
41 |
+
def prepare_dataset(parameters, df, rain, temperature, datepicker):
|
42 |
+
if rain != "Default":
|
43 |
+
df["MTXWTH_Day_precip"] = rain_mapping[rain]
|
44 |
+
|
45 |
+
df["MTXWTH_Temp_min"] = df["MTXWTH_Temp_min"] + temperature
|
46 |
+
df["MTXWTH_Temp_max"] = df["MTXWTH_Temp_max"] + temperature
|
47 |
+
|
48 |
+
lowerbound = datepicker - datetime.timedelta(days = 35)
|
49 |
+
upperbound = datepicker + datetime.timedelta(days = 30)
|
50 |
+
|
51 |
+
df = df.loc[(df["Date"]>lowerbound) & (df["Date"]<=upperbound)]
|
52 |
+
|
53 |
+
df = TimeSeriesDataSet.from_parameters(parameters, df)
|
54 |
+
return df.to_dataloader(train=False, batch_size=256,num_workers = 0)
|
55 |
+
|
56 |
+
def predict(model, dataloader):
|
57 |
+
return model.predict(dataloader, mode="raw", return_x=True, return_index=True)
|
58 |
+
|
59 |
+
## Initiate Data
|
60 |
+
with open('data/parameters.pkl', 'rb') as f:
|
61 |
+
parameters = pickle.load(f)
|
62 |
+
model = TemporalFusionTransformer.load_from_checkpoint('model/tft_check.ckpt')
|
63 |
+
|
64 |
+
df = pd.read_pickle('data/test_data.pkl')
|
65 |
+
df = df.loc[(df["Branch"] == 15) & (df["Group"].isin(["6","7","4","1"]))]
|
66 |
+
|
67 |
+
rain_mapping = {
|
68 |
+
"Yes" : 1,
|
69 |
+
"No" : , 0
|
70 |
+
}
|
71 |
+
|
72 |
+
# Start App
|
73 |
+
st.title("Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting")
|
74 |
+
|
75 |
+
st.markdown(body = """
|
76 |
+
### Abstract
|
77 |
+
Multi-horizon forecasting often contains a complex mix of inputs – including
|
78 |
+
static (i.e. time-invariant) covariates, known future inputs, and other exogenous
|
79 |
+
time series that are only observed in the past – without any prior information
|
80 |
+
on how they interact with the target. Several deep learning methods have been
|
81 |
+
proposed, but they are typically ‘black-box’ models which do not shed light on
|
82 |
+
how they use the full range of inputs present in practical scenarios. In this pa-
|
83 |
+
per, we introduce the Temporal Fusion Transformer (TFT) – a novel attention-
|
84 |
+
based architecture which combines high-performance multi-horizon forecasting
|
85 |
+
with interpretable insights into temporal dynamics. To learn temporal rela-
|
86 |
+
tionships at different scales, TFT uses recurrent layers for local processing and
|
87 |
+
interpretable self-attention layers for long-term dependencies. TFT utilizes spe-
|
88 |
+
cialized components to select relevant features and a series of gating layers to
|
89 |
+
suppress unnecessary components, enabling high performance in a wide range of
|
90 |
+
scenarios. On a variety of real-world datasets, we demonstrate significant per-
|
91 |
+
formance improvements over existing benchmarks, and showcase three practical
|
92 |
+
interpretability use cases of TFT.
|
93 |
+
""")
|
94 |
+
|
95 |
+
rain = st.radio("Rain Indicator", ('Default', 'Yes', 'No'))
|
96 |
+
|
97 |
+
temperature = st.slider('Change in Temperature', min_value=-10, max_value=+10, value=0, step=0.25)
|
98 |
+
|
99 |
+
datepicker = st.date_input("Start of Forecast", datetime.date(2022, 12, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30))
|
100 |
+
|
101 |
+
arr = np.random.normal(1, 1, size=100)
|
102 |
+
fig, ax = plt.subplots()
|
103 |
+
ax.hist(arr, bins=20)
|
104 |
+
|
105 |
+
st.pyplot(fig)
|
106 |
+
|
107 |
+
st.button("Forecast Sales", type="primary") #on_click=None,
|
108 |
+
|
109 |
+
# %%
|
110 |
+
preds = raw_preds_to_df(out, quantiles = None)
|
111 |
+
|
112 |
+
preds = preds.merge(data_selected[['time_idx','Group','Branch','sales','weight','Date','MTXWTH_Day_precip','MTXWTH_Temp_max','MTXWTH_Temp_min']],how='left',left_on=['pred_idx','Group','Branch'],right_on=['time_idx','Group','Branch'])
|
113 |
+
preds.rename(columns={'time_idx_x':'time_idx'},inplace=True)
|
114 |
+
preds.drop(columns=['time_idx_y'],inplace=True)
|
115 |
+
|
116 |
+
|
data/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
data/parameters.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06caaede2baeaa36c308e46ee74a2898141161193d0426c577e3f7029104db10
|
3 |
+
size 17761
|
data/test_data.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6d1cf5ab9ad31de916030c795598d13ba388f95bbde2a3b295088666fb65ac7
|
3 |
+
size 31347323
|
model/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
model/tft_check.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6694f37ecd5da5795eb1b0320fa96dda374fe331b05d9d5e2d0a49001fc2f9ed
|
3 |
+
size 5176944
|
requirements.txt
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.4.0
|
2 |
+
aiohttp==3.8.3
|
3 |
+
aiosignal==1.3.1
|
4 |
+
alembic==1.9.2
|
5 |
+
asttokens==2.2.1
|
6 |
+
async-timeout==4.0.2
|
7 |
+
attrs==22.2.0
|
8 |
+
autopage==0.5.1
|
9 |
+
backcall==0.2.0
|
10 |
+
cachetools==5.2.1
|
11 |
+
certifi==2022.12.7
|
12 |
+
charset-normalizer==2.1.1
|
13 |
+
cliff==4.1.0
|
14 |
+
cmaes==0.9.1
|
15 |
+
cmd2==2.4.2
|
16 |
+
colorlog==6.7.0
|
17 |
+
comm==0.1.2
|
18 |
+
contourpy==1.0.7
|
19 |
+
cycler==0.11.0
|
20 |
+
debugpy==1.6.6
|
21 |
+
decorator==5.1.1
|
22 |
+
executing==1.2.0
|
23 |
+
fonttools==4.38.0
|
24 |
+
frozenlist==1.3.3
|
25 |
+
fsspec==2022.11.0
|
26 |
+
future==0.18.3
|
27 |
+
google-auth==2.16.0
|
28 |
+
google-auth-oauthlib==0.4.6
|
29 |
+
greenlet==2.0.1
|
30 |
+
#grpcio==1.51.1
|
31 |
+
idna==3.4
|
32 |
+
importlib-metadata==6.0.0
|
33 |
+
importlib-resources==5.10.2
|
34 |
+
ipykernel==6.21.2
|
35 |
+
ipython==8.10.0
|
36 |
+
jedi==0.18.2
|
37 |
+
joblib==1.2.0
|
38 |
+
jupyter_client==8.0.3
|
39 |
+
jupyter_core==5.2.0
|
40 |
+
kiwisolver==1.4.4
|
41 |
+
lightning-utilities==0.5.0
|
42 |
+
lxml==4.9.2
|
43 |
+
Mako==1.2.4
|
44 |
+
Markdown==3.4.1
|
45 |
+
MarkupSafe==2.1.1
|
46 |
+
matplotlib==3.6.3
|
47 |
+
matplotlib-inline==0.1.6
|
48 |
+
multidict==6.0.4
|
49 |
+
nest-asyncio==1.5.6
|
50 |
+
numpy==1.23.5
|
51 |
+
oauthlib==3.2.2
|
52 |
+
optuna==2.10.1
|
53 |
+
packaging==23.0
|
54 |
+
pandas==1.5.2
|
55 |
+
parso==0.8.3
|
56 |
+
patsy==0.5.3
|
57 |
+
pbr==5.11.1
|
58 |
+
pexpect==4.8.0
|
59 |
+
pickleshare==0.7.5
|
60 |
+
Pillow==9.4.0
|
61 |
+
platformdirs==3.0.0
|
62 |
+
prettytable==3.6.0
|
63 |
+
prompt-toolkit==3.0.37
|
64 |
+
protobuf==3.20.1
|
65 |
+
psutil==5.9.4
|
66 |
+
ptyprocess==0.7.0
|
67 |
+
pure-eval==0.2.2
|
68 |
+
pyasn1==0.4.8
|
69 |
+
pyasn1-modules==0.2.8
|
70 |
+
pyDeprecate==0.3.1
|
71 |
+
Pygments==2.14.0
|
72 |
+
pyparsing==3.0.9
|
73 |
+
pyperclip==1.8.2
|
74 |
+
python-dateutil==2.8.2
|
75 |
+
pytorch-forecasting==0.10.3
|
76 |
+
pytorch-lightning==1.9.0
|
77 |
+
pytz==2022.7.1
|
78 |
+
PyYAML==6.0
|
79 |
+
pyzmq==25.0.0
|
80 |
+
requests==2.28.2
|
81 |
+
requests-futures==1.0.0
|
82 |
+
requests-oauthlib==1.3.1
|
83 |
+
rsa==4.9
|
84 |
+
scikit-learn==1.1.3
|
85 |
+
scipy==1.10.0
|
86 |
+
six==1.16.0
|
87 |
+
SQLAlchemy==1.4.46
|
88 |
+
stack-data==0.6.2
|
89 |
+
statsmodels==0.13.5
|
90 |
+
stevedore==4.1.1
|
91 |
+
tensorboard==2.11.2
|
92 |
+
tensorboard-data-server==0.6.1
|
93 |
+
tensorboard-plugin-wit==1.8.1
|
94 |
+
tensorboardX==2.5.1
|
95 |
+
threadpoolctl==3.1.0
|
96 |
+
torch==1.10.2
|
97 |
+
torchaudio==0.10.2
|
98 |
+
torchmetrics==0.11.0
|
99 |
+
torchvision==0.11.3
|
100 |
+
tornado==6.2
|
101 |
+
tqdm==4.64.1
|
102 |
+
traitlets==5.9.0
|
103 |
+
typing_extensions==4.4.0
|
104 |
+
urllib3==1.26.14
|
105 |
+
wcwidth==0.2.6
|
106 |
+
Werkzeug==2.2.2
|
107 |
+
yahooquery==2.3.1
|
108 |
+
yarl==1.8.2
|
109 |
+
zipp==3.11.0
|