Spaces:
Sleeping
Sleeping
File size: 16,377 Bytes
a98adb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
import numpy as np
import random
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from torchvision.models.resnet import ResNet50_Weights
from typing import Type, Any, Callable, Union, List, Optional
from torch import Tensor
from huggingface_hub import hf_hub_download
username = "leandrumartin"
model_repo = "assignment2model"
model_path = hf_hub_download(repo_id=f"{username}/{model_repo}", filename="clothing1m.pth")
CATEGORY_NAMES = ['T-Shirt', 'Shirt', 'Knitwear', 'Chiffon', 'Sweater', 'Hoodie', 'Windbreaker', 'Jacket', 'Downcoat', 'Suit', 'Shawl', 'Dress', 'Vest', 'Underwear']
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=False,
dilation=dilation,
)
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion: int = 1
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion: int = 4
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.0)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(
self,
block: Type[Union[BasicBlock, Bottleneck]],
layers: List[int],
num_classes: int = 1000,
show: bool = False,
zero_init_residual: bool = False,
groups: int = 1,
width_per_group: int = 64,
replace_stride_with_dilation: Optional[List[bool]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.show = show
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
f"or a 3-element tuple, got {replace_stride_with_dilation}"
)
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
# self.fc1 = nn.Linear(512 * block.expansion, 512)
# self.lu = nn.LeakyReLU(0.1, inplace=True)
# self.fc2 = nn.Linear(512, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck) and m.bn3.weight is not None:
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
elif isinstance(m, BasicBlock) and m.bn2.weight is not None:
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
def _make_layer(
self,
block: Type[Union[BasicBlock, Bottleneck]],
planes: int,
blocks: int,
stride: int = 1,
dilate: bool = False,
) -> nn.Sequential:
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(
block(
self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
)
)
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(
self.inplanes,
planes,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation,
norm_layer=norm_layer,
)
)
return nn.Sequential(*layers)
def _forward_impl(self, x: Tensor) -> Tensor:
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
out = self.fc(x)
# x = self.lu(self.fc1(x))
# out = self.fc2(x)
if self.show:
return out, x
else:
return out
def forward(self, x: Tensor) -> Tensor:
return self._forward_impl(x)
def _resnet(
block: Type[Union[BasicBlock, Bottleneck]],
layers: List[int],
num_classes,
show,
**kwargs: Any,
) -> ResNet:
model = ResNet(block, layers, num_classes, show, **kwargs)
return model
def resnet50(num_classes, show=False, **kwargs: Any) -> ResNet:
"""ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
.. note::
The bottleneck of TorchVision places the stride for downsampling to the second 3x3
convolution while the original paper places it to the first 1x1 convolution.
This variant improves the accuracy and is known as `ResNet V1.5
<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.
Args:
weights (:class:`~torchvision.models.ResNet50_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.ResNet50_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
for more details about this class.
.. autoclass:: torchvision.models.ResNet50_Weights
:members:
"""
return _resnet(Bottleneck, [3, 4, 6, 3], num_classes, show, **kwargs)
class Clothing1M(Dataset):
def __init__(self, image, train=True, transform=None, target_transform=None, augment=False, mode='noisy'):
self.image = image
self.transform = transform
self.target_transform = target_transform
self.augment = augment
self.train = False
self.mode = mode
self.data = [self.image]
def __getitem__(self, index):
img, target = self.data[index], 0
# to return a PIL Image
# img_origin = Image.open(img).convert('RGB')
img_origin = Image.fromarray(img).convert('RGB')
if self.transform is not None:
img = self.transform(img_origin)
if self.augment:
img1 = self.transform(img_origin)
if self.target_transform is not None:
target = self.target_transform(target)
return img, 0
def __len__(self):
return len(self.data)
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def preprocess_image(image):
pass
def classify_image(image):
args = {
'overwrite': False,
'tqdm': 0,
'config_file': 'configs/clothing1m.yaml',
'dataset': 'clothing1M',
'root': './data',
'noise_type': 'clean',
'noise_rate': 0.0,
'save_dir': None,
'gpus': '0',
'num_workers': 8,
'grad_bound': 0.0,
'seed': 233,
'backbone': 'res50',
'optimizer': 'sgd',
'momentum': 0.9,
'nesterov': False,
'pretrained': True,
'ssl_pretrained': None,
'resume': model_path,
'lr': 0.01,
'scheduler': 'cos',
'milestones': None,
'gamma': None,
'weight_decay': 0.0001,
'batch_size': 128,
'start_epoch': None,
'epochs': 100,
'warmup': 0,
'ema': False,
'beta': 1.0,
'num_classes': 14,
}
device = 'cpu'
set_seed(args['seed'])
MEAN = (0.485, 0.456, 0.406)
STD = (0.229, 0.224, 0.225)
test_loader = DataLoader(
dataset=Clothing1M(
image=image,
train=False,
transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)]
)),
batch_size=256,
shuffle=False,
pin_memory=True,
num_workers=args['num_workers'])
model = resnet50(num_classes=args['num_classes'], show=True)
nFeat = 2048
state_dict = ResNet50_Weights.IMAGENET1K_V2.get_state_dict(progress=True)
state_dict = {k:v for k,v in state_dict.items() if 'fc' not in k}
missing, unexpected = model.load_state_dict(state_dict, strict=False)
print('Loading ImageNet pretrained model')
print('Model missing keys:\n', missing)
print('Model unexpected keys:\n', unexpected)
checkpoint = torch.load(args['resume'], map_location=torch.device(device))
state_dict = checkpoint['model_state_dict']
for key in list(state_dict.keys()):
if 'ema_model' in key:
state_dict[key.replace('ema_model.', '')] = state_dict[key]
del state_dict[key]
else:
del state_dict[key]
model.load_state_dict(state_dict)
epoch = checkpoint['epoch']
if args['start_epoch'] is None:
args['start_epoch'] = epoch + 1
model = model.to(device)
loader_x, loader_y = None, None
for x, y in test_loader:
print(x)
print(y)
loader_x, loader_y = x.to(device), y.to(device)
break
z, _ = model(loader_x)
pred = torch.argmax(z, 1)
prediction_label = CATEGORY_NAMES[pred.item()]
return f'Predicted label: {prediction_label}'
# Example image query (optional but recommended for demonstration)
example_image = "./examples/image_0.jpg" # Ensure this image is available in the repo
example_image_2 = "./examples/image_7.jpg"
# Create Gradio interface
interface = gr.Interface(
fn=classify_image,
inputs=gr.Image(),
outputs=gr.Text(),
examples=[example_image, example_image_2] # Include an example input for users -- you will want to find a relevant image to include and push it to your HuggingFace Space
)
if __name__ == "__main__":
interface.launch() |