Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision import transforms
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.utils.data import DataLoader, Dataset
|
9 |
+
from torchvision.models.resnet import ResNet50_Weights
|
10 |
+
from typing import Type, Any, Callable, Union, List, Optional
|
11 |
+
from torch import Tensor
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
|
14 |
+
username = "leandrumartin"
|
15 |
+
model_repo = "assignment2model"
|
16 |
+
model_path = hf_hub_download(repo_id=f"{username}/{model_repo}", filename="clothing1m.pth")
|
17 |
+
|
18 |
+
CATEGORY_NAMES = ['T-Shirt', 'Shirt', 'Knitwear', 'Chiffon', 'Sweater', 'Hoodie', 'Windbreaker', 'Jacket', 'Downcoat', 'Suit', 'Shawl', 'Dress', 'Vest', 'Underwear']
|
19 |
+
|
20 |
+
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
|
21 |
+
"""3x3 convolution with padding"""
|
22 |
+
return nn.Conv2d(
|
23 |
+
in_planes,
|
24 |
+
out_planes,
|
25 |
+
kernel_size=3,
|
26 |
+
stride=stride,
|
27 |
+
padding=dilation,
|
28 |
+
groups=groups,
|
29 |
+
bias=False,
|
30 |
+
dilation=dilation,
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
|
35 |
+
"""1x1 convolution"""
|
36 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
37 |
+
|
38 |
+
|
39 |
+
class BasicBlock(nn.Module):
|
40 |
+
expansion: int = 1
|
41 |
+
|
42 |
+
def __init__(
|
43 |
+
self,
|
44 |
+
inplanes: int,
|
45 |
+
planes: int,
|
46 |
+
stride: int = 1,
|
47 |
+
downsample: Optional[nn.Module] = None,
|
48 |
+
groups: int = 1,
|
49 |
+
base_width: int = 64,
|
50 |
+
dilation: int = 1,
|
51 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
52 |
+
) -> None:
|
53 |
+
super().__init__()
|
54 |
+
if norm_layer is None:
|
55 |
+
norm_layer = nn.BatchNorm2d
|
56 |
+
if groups != 1 or base_width != 64:
|
57 |
+
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
|
58 |
+
if dilation > 1:
|
59 |
+
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
60 |
+
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
61 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
62 |
+
self.bn1 = norm_layer(planes)
|
63 |
+
self.relu = nn.ReLU(inplace=True)
|
64 |
+
self.conv2 = conv3x3(planes, planes)
|
65 |
+
self.bn2 = norm_layer(planes)
|
66 |
+
self.downsample = downsample
|
67 |
+
self.stride = stride
|
68 |
+
|
69 |
+
def forward(self, x: Tensor) -> Tensor:
|
70 |
+
identity = x
|
71 |
+
|
72 |
+
out = self.conv1(x)
|
73 |
+
out = self.bn1(out)
|
74 |
+
out = self.relu(out)
|
75 |
+
|
76 |
+
out = self.conv2(out)
|
77 |
+
out = self.bn2(out)
|
78 |
+
|
79 |
+
if self.downsample is not None:
|
80 |
+
identity = self.downsample(x)
|
81 |
+
|
82 |
+
out += identity
|
83 |
+
out = self.relu(out)
|
84 |
+
|
85 |
+
return out
|
86 |
+
|
87 |
+
|
88 |
+
class Bottleneck(nn.Module):
|
89 |
+
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
|
90 |
+
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
|
91 |
+
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
|
92 |
+
# This variant is also known as ResNet V1.5 and improves accuracy according to
|
93 |
+
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
|
94 |
+
|
95 |
+
expansion: int = 4
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
inplanes: int,
|
100 |
+
planes: int,
|
101 |
+
stride: int = 1,
|
102 |
+
downsample: Optional[nn.Module] = None,
|
103 |
+
groups: int = 1,
|
104 |
+
base_width: int = 64,
|
105 |
+
dilation: int = 1,
|
106 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
107 |
+
) -> None:
|
108 |
+
super().__init__()
|
109 |
+
if norm_layer is None:
|
110 |
+
norm_layer = nn.BatchNorm2d
|
111 |
+
width = int(planes * (base_width / 64.0)) * groups
|
112 |
+
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
113 |
+
self.conv1 = conv1x1(inplanes, width)
|
114 |
+
self.bn1 = norm_layer(width)
|
115 |
+
self.conv2 = conv3x3(width, width, stride, groups, dilation)
|
116 |
+
self.bn2 = norm_layer(width)
|
117 |
+
self.conv3 = conv1x1(width, planes * self.expansion)
|
118 |
+
self.bn3 = norm_layer(planes * self.expansion)
|
119 |
+
self.relu = nn.ReLU(inplace=True)
|
120 |
+
self.downsample = downsample
|
121 |
+
self.stride = stride
|
122 |
+
|
123 |
+
def forward(self, x: Tensor) -> Tensor:
|
124 |
+
identity = x
|
125 |
+
|
126 |
+
out = self.conv1(x)
|
127 |
+
out = self.bn1(out)
|
128 |
+
out = self.relu(out)
|
129 |
+
|
130 |
+
out = self.conv2(out)
|
131 |
+
out = self.bn2(out)
|
132 |
+
out = self.relu(out)
|
133 |
+
|
134 |
+
out = self.conv3(out)
|
135 |
+
out = self.bn3(out)
|
136 |
+
|
137 |
+
if self.downsample is not None:
|
138 |
+
identity = self.downsample(x)
|
139 |
+
|
140 |
+
out += identity
|
141 |
+
out = self.relu(out)
|
142 |
+
|
143 |
+
return out
|
144 |
+
|
145 |
+
|
146 |
+
class ResNet(nn.Module):
|
147 |
+
def __init__(
|
148 |
+
self,
|
149 |
+
block: Type[Union[BasicBlock, Bottleneck]],
|
150 |
+
layers: List[int],
|
151 |
+
num_classes: int = 1000,
|
152 |
+
show: bool = False,
|
153 |
+
zero_init_residual: bool = False,
|
154 |
+
groups: int = 1,
|
155 |
+
width_per_group: int = 64,
|
156 |
+
replace_stride_with_dilation: Optional[List[bool]] = None,
|
157 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
158 |
+
) -> None:
|
159 |
+
super().__init__()
|
160 |
+
if norm_layer is None:
|
161 |
+
norm_layer = nn.BatchNorm2d
|
162 |
+
self._norm_layer = norm_layer
|
163 |
+
|
164 |
+
self.show = show
|
165 |
+
self.inplanes = 64
|
166 |
+
self.dilation = 1
|
167 |
+
if replace_stride_with_dilation is None:
|
168 |
+
# each element in the tuple indicates if we should replace
|
169 |
+
# the 2x2 stride with a dilated convolution instead
|
170 |
+
replace_stride_with_dilation = [False, False, False]
|
171 |
+
if len(replace_stride_with_dilation) != 3:
|
172 |
+
raise ValueError(
|
173 |
+
"replace_stride_with_dilation should be None "
|
174 |
+
f"or a 3-element tuple, got {replace_stride_with_dilation}"
|
175 |
+
)
|
176 |
+
self.groups = groups
|
177 |
+
self.base_width = width_per_group
|
178 |
+
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
|
179 |
+
self.bn1 = norm_layer(self.inplanes)
|
180 |
+
self.relu = nn.ReLU(inplace=True)
|
181 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
182 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
183 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
|
184 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
|
185 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
|
186 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
187 |
+
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
188 |
+
# self.fc1 = nn.Linear(512 * block.expansion, 512)
|
189 |
+
# self.lu = nn.LeakyReLU(0.1, inplace=True)
|
190 |
+
# self.fc2 = nn.Linear(512, num_classes)
|
191 |
+
|
192 |
+
for m in self.modules():
|
193 |
+
if isinstance(m, nn.Conv2d):
|
194 |
+
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
195 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
196 |
+
nn.init.constant_(m.weight, 1)
|
197 |
+
nn.init.constant_(m.bias, 0)
|
198 |
+
|
199 |
+
# Zero-initialize the last BN in each residual branch,
|
200 |
+
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
|
201 |
+
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
|
202 |
+
if zero_init_residual:
|
203 |
+
for m in self.modules():
|
204 |
+
if isinstance(m, Bottleneck) and m.bn3.weight is not None:
|
205 |
+
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
|
206 |
+
elif isinstance(m, BasicBlock) and m.bn2.weight is not None:
|
207 |
+
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
|
208 |
+
|
209 |
+
def _make_layer(
|
210 |
+
self,
|
211 |
+
block: Type[Union[BasicBlock, Bottleneck]],
|
212 |
+
planes: int,
|
213 |
+
blocks: int,
|
214 |
+
stride: int = 1,
|
215 |
+
dilate: bool = False,
|
216 |
+
) -> nn.Sequential:
|
217 |
+
norm_layer = self._norm_layer
|
218 |
+
downsample = None
|
219 |
+
previous_dilation = self.dilation
|
220 |
+
if dilate:
|
221 |
+
self.dilation *= stride
|
222 |
+
stride = 1
|
223 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
224 |
+
downsample = nn.Sequential(
|
225 |
+
conv1x1(self.inplanes, planes * block.expansion, stride),
|
226 |
+
norm_layer(planes * block.expansion),
|
227 |
+
)
|
228 |
+
|
229 |
+
layers = []
|
230 |
+
layers.append(
|
231 |
+
block(
|
232 |
+
self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
|
233 |
+
)
|
234 |
+
)
|
235 |
+
self.inplanes = planes * block.expansion
|
236 |
+
for _ in range(1, blocks):
|
237 |
+
layers.append(
|
238 |
+
block(
|
239 |
+
self.inplanes,
|
240 |
+
planes,
|
241 |
+
groups=self.groups,
|
242 |
+
base_width=self.base_width,
|
243 |
+
dilation=self.dilation,
|
244 |
+
norm_layer=norm_layer,
|
245 |
+
)
|
246 |
+
)
|
247 |
+
|
248 |
+
return nn.Sequential(*layers)
|
249 |
+
|
250 |
+
def _forward_impl(self, x: Tensor) -> Tensor:
|
251 |
+
# See note [TorchScript super()]
|
252 |
+
x = self.conv1(x)
|
253 |
+
x = self.bn1(x)
|
254 |
+
x = self.relu(x)
|
255 |
+
x = self.maxpool(x)
|
256 |
+
|
257 |
+
x = self.layer1(x)
|
258 |
+
x = self.layer2(x)
|
259 |
+
x = self.layer3(x)
|
260 |
+
x = self.layer4(x)
|
261 |
+
|
262 |
+
x = self.avgpool(x)
|
263 |
+
x = torch.flatten(x, 1)
|
264 |
+
out = self.fc(x)
|
265 |
+
# x = self.lu(self.fc1(x))
|
266 |
+
# out = self.fc2(x)
|
267 |
+
if self.show:
|
268 |
+
return out, x
|
269 |
+
else:
|
270 |
+
return out
|
271 |
+
|
272 |
+
def forward(self, x: Tensor) -> Tensor:
|
273 |
+
return self._forward_impl(x)
|
274 |
+
|
275 |
+
|
276 |
+
def _resnet(
|
277 |
+
block: Type[Union[BasicBlock, Bottleneck]],
|
278 |
+
layers: List[int],
|
279 |
+
num_classes,
|
280 |
+
show,
|
281 |
+
**kwargs: Any,
|
282 |
+
) -> ResNet:
|
283 |
+
|
284 |
+
model = ResNet(block, layers, num_classes, show, **kwargs)
|
285 |
+
|
286 |
+
return model
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
|
291 |
+
def resnet50(num_classes, show=False, **kwargs: Any) -> ResNet:
|
292 |
+
"""ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
|
293 |
+
|
294 |
+
.. note::
|
295 |
+
The bottleneck of TorchVision places the stride for downsampling to the second 3x3
|
296 |
+
convolution while the original paper places it to the first 1x1 convolution.
|
297 |
+
This variant improves the accuracy and is known as `ResNet V1.5
|
298 |
+
<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.
|
299 |
+
|
300 |
+
Args:
|
301 |
+
weights (:class:`~torchvision.models.ResNet50_Weights`, optional): The
|
302 |
+
pretrained weights to use. See
|
303 |
+
:class:`~torchvision.models.ResNet50_Weights` below for
|
304 |
+
more details, and possible values. By default, no pre-trained
|
305 |
+
weights are used.
|
306 |
+
progress (bool, optional): If True, displays a progress bar of the
|
307 |
+
download to stderr. Default is True.
|
308 |
+
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
|
309 |
+
base class. Please refer to the `source code
|
310 |
+
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
|
311 |
+
for more details about this class.
|
312 |
+
|
313 |
+
.. autoclass:: torchvision.models.ResNet50_Weights
|
314 |
+
:members:
|
315 |
+
"""
|
316 |
+
|
317 |
+
return _resnet(Bottleneck, [3, 4, 6, 3], num_classes, show, **kwargs)
|
318 |
+
|
319 |
+
|
320 |
+
|
321 |
+
class Clothing1M(Dataset):
|
322 |
+
def __init__(self, image, train=True, transform=None, target_transform=None, augment=False, mode='noisy'):
|
323 |
+
self.image = image
|
324 |
+
self.transform = transform
|
325 |
+
self.target_transform = target_transform
|
326 |
+
self.augment = augment
|
327 |
+
self.train = False
|
328 |
+
self.mode = mode
|
329 |
+
|
330 |
+
self.data = [self.image]
|
331 |
+
|
332 |
+
def __getitem__(self, index):
|
333 |
+
img, target = self.data[index], 0
|
334 |
+
|
335 |
+
# to return a PIL Image
|
336 |
+
# img_origin = Image.open(img).convert('RGB')
|
337 |
+
img_origin = Image.fromarray(img).convert('RGB')
|
338 |
+
|
339 |
+
if self.transform is not None:
|
340 |
+
img = self.transform(img_origin)
|
341 |
+
if self.augment:
|
342 |
+
img1 = self.transform(img_origin)
|
343 |
+
|
344 |
+
if self.target_transform is not None:
|
345 |
+
target = self.target_transform(target)
|
346 |
+
|
347 |
+
return img, 0
|
348 |
+
|
349 |
+
def __len__(self):
|
350 |
+
return len(self.data)
|
351 |
+
|
352 |
+
def set_seed(seed):
|
353 |
+
torch.manual_seed(seed)
|
354 |
+
torch.cuda.manual_seed_all(seed)
|
355 |
+
np.random.seed(seed)
|
356 |
+
random.seed(seed)
|
357 |
+
torch.backends.cudnn.deterministic = True
|
358 |
+
torch.backends.cudnn.benchmark = False
|
359 |
+
|
360 |
+
def preprocess_image(image):
|
361 |
+
pass
|
362 |
+
|
363 |
+
def classify_image(image):
|
364 |
+
args = {
|
365 |
+
'overwrite': False,
|
366 |
+
'tqdm': 0,
|
367 |
+
'config_file': 'configs/clothing1m.yaml',
|
368 |
+
'dataset': 'clothing1M',
|
369 |
+
'root': './data',
|
370 |
+
'noise_type': 'clean',
|
371 |
+
'noise_rate': 0.0,
|
372 |
+
'save_dir': None,
|
373 |
+
'gpus': '0',
|
374 |
+
'num_workers': 8,
|
375 |
+
'grad_bound': 0.0,
|
376 |
+
'seed': 233,
|
377 |
+
'backbone': 'res50',
|
378 |
+
'optimizer': 'sgd',
|
379 |
+
'momentum': 0.9,
|
380 |
+
'nesterov': False,
|
381 |
+
'pretrained': True,
|
382 |
+
'ssl_pretrained': None,
|
383 |
+
'resume': model_path,
|
384 |
+
'lr': 0.01,
|
385 |
+
'scheduler': 'cos',
|
386 |
+
'milestones': None,
|
387 |
+
'gamma': None,
|
388 |
+
'weight_decay': 0.0001,
|
389 |
+
'batch_size': 128,
|
390 |
+
'start_epoch': None,
|
391 |
+
'epochs': 100,
|
392 |
+
'warmup': 0,
|
393 |
+
'ema': False,
|
394 |
+
'beta': 1.0,
|
395 |
+
'num_classes': 14,
|
396 |
+
}
|
397 |
+
|
398 |
+
device = 'cpu'
|
399 |
+
set_seed(args['seed'])
|
400 |
+
|
401 |
+
MEAN = (0.485, 0.456, 0.406)
|
402 |
+
STD = (0.229, 0.224, 0.225)
|
403 |
+
|
404 |
+
test_loader = DataLoader(
|
405 |
+
dataset=Clothing1M(
|
406 |
+
image=image,
|
407 |
+
train=False,
|
408 |
+
transform=transforms.Compose([
|
409 |
+
transforms.Resize(256),
|
410 |
+
transforms.CenterCrop(224),
|
411 |
+
transforms.ToTensor(),
|
412 |
+
transforms.Normalize(MEAN, STD)]
|
413 |
+
)),
|
414 |
+
batch_size=256,
|
415 |
+
shuffle=False,
|
416 |
+
pin_memory=True,
|
417 |
+
num_workers=args['num_workers'])
|
418 |
+
|
419 |
+
model = resnet50(num_classes=args['num_classes'], show=True)
|
420 |
+
nFeat = 2048
|
421 |
+
|
422 |
+
state_dict = ResNet50_Weights.IMAGENET1K_V2.get_state_dict(progress=True)
|
423 |
+
state_dict = {k:v for k,v in state_dict.items() if 'fc' not in k}
|
424 |
+
missing, unexpected = model.load_state_dict(state_dict, strict=False)
|
425 |
+
print('Loading ImageNet pretrained model')
|
426 |
+
print('Model missing keys:\n', missing)
|
427 |
+
print('Model unexpected keys:\n', unexpected)
|
428 |
+
|
429 |
+
checkpoint = torch.load(args['resume'], map_location=torch.device(device))
|
430 |
+
state_dict = checkpoint['model_state_dict']
|
431 |
+
for key in list(state_dict.keys()):
|
432 |
+
if 'ema_model' in key:
|
433 |
+
state_dict[key.replace('ema_model.', '')] = state_dict[key]
|
434 |
+
del state_dict[key]
|
435 |
+
else:
|
436 |
+
del state_dict[key]
|
437 |
+
model.load_state_dict(state_dict)
|
438 |
+
epoch = checkpoint['epoch']
|
439 |
+
if args['start_epoch'] is None:
|
440 |
+
args['start_epoch'] = epoch + 1
|
441 |
+
|
442 |
+
model = model.to(device)
|
443 |
+
|
444 |
+
loader_x, loader_y = None, None
|
445 |
+
for x, y in test_loader:
|
446 |
+
print(x)
|
447 |
+
print(y)
|
448 |
+
loader_x, loader_y = x.to(device), y.to(device)
|
449 |
+
break
|
450 |
+
z, _ = model(loader_x)
|
451 |
+
pred = torch.argmax(z, 1)
|
452 |
+
prediction_label = CATEGORY_NAMES[pred.item()]
|
453 |
+
return f'Predicted label: {prediction_label}'
|
454 |
+
|
455 |
+
# Example image query (optional but recommended for demonstration)
|
456 |
+
example_image = "./examples/image_0.jpg" # Ensure this image is available in the repo
|
457 |
+
example_image_2 = "./examples/image_7.jpg"
|
458 |
+
|
459 |
+
# Create Gradio interface
|
460 |
+
interface = gr.Interface(
|
461 |
+
fn=classify_image,
|
462 |
+
inputs=gr.Image(),
|
463 |
+
outputs=gr.Text(),
|
464 |
+
examples=[example_image, example_image_2] # Include an example input for users -- you will want to find a relevant image to include and push it to your HuggingFace Space
|
465 |
+
)
|
466 |
+
|
467 |
+
if __name__ == "__main__":
|
468 |
+
interface.launch()
|