File size: 21,263 Bytes
fd1d0b8 0320bf7 f4bb2ee fd1d0b8 44ac5ee 5757dad fd1d0b8 5757dad fd1d0b8 5757dad 22bbe4e c43e786 fd1d0b8 5757dad fd1d0b8 f4bb2ee fd1d0b8 a5f6b8b fd1d0b8 43f39e7 4d88a84 fd1d0b8 5757dad 4d88a84 fd1d0b8 4d88a84 fd1d0b8 ab32d1c 5757dad 44ac5ee 5757dad fd1d0b8 5757dad 44ac5ee 22bbe4e fd1d0b8 5757dad fd1d0b8 0320bf7 fd1d0b8 22bbe4e 4d88a84 22bbe4e fd1d0b8 2fa0d66 5757dad fd1d0b8 5757dad 2fa0d66 5757dad fd1d0b8 5757dad fd1d0b8 5757dad fd1d0b8 5757dad fd1d0b8 5757dad fd1d0b8 5757dad fd1d0b8 5757dad fd1d0b8 5757dad fd1d0b8 5757dad fd1d0b8 2fa0d66 ab32d1c fd1d0b8 5757dad fd1d0b8 5757dad fd1d0b8 22bbe4e fd1d0b8 ab32d1c fd1d0b8 4d88a84 ab32d1c fd1d0b8 4d88a84 fd1d0b8 4d88a84 ab32d1c fd1d0b8 4d88a84 fd1d0b8 4d88a84 fd1d0b8 4d88a84 fd1d0b8 4d88a84 fd1d0b8 5189775 2fa0d66 5189775 fd1d0b8 2fa0d66 fd1d0b8 5757dad 44ac5ee fd1d0b8 4d5f0e8 fd1d0b8 2fa0d66 fd1d0b8 5757dad 44ac5ee fd1d0b8 8bd123f fd1d0b8 5757dad 4d5f0e8 5757dad 44ac5ee 5757dad 44ac5ee 5757dad 44ac5ee aedbc59 5757dad 44ac5ee 5757dad aedbc59 5757dad 44ac5ee fd1d0b8 44ac5ee fd1d0b8 44ac5ee c48f9e1 a1b71de 4d88a84 c48f9e1 ab32d1c 44ac5ee c48f9e1 44ac5ee 5757dad 4d5f0e8 44ac5ee 5757dad 44ac5ee aedbc59 44ac5ee 43f39e7 8bd123f 8a3a868 8bd123f 8a3a868 8bd123f 8a3a868 8bd123f 8a3a868 c7da115 8bd123f 8a3a868 8bd123f 8a3a868 8bd123f 8a3a868 8bd123f 8a3a868 8bd123f 2f6509e 44ac5ee 0320bf7 4d88a84 44ac5ee 2f6509e 44ac5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
import os
import json
import re
import hashlib
import os
import json
import re
import hashlib
import gradio as gr
from functools import partial
from collections import defaultdict
from pathlib import Path
from threading import Lock
from typing import List, Dict, Any, Optional, List, Literal, Type
import numpy as np
from dotenv import load_dotenv
from rich.console import Console
from rich.style import Style
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
from langchain_nvidia_ai_endpoints import ChatNVIDIA
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain.schema.runnable.passthrough import RunnableAssign
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.retrievers import BM25Retriever
from langchain_openai import ChatOpenAI
from langchain.output_parsers import PydanticOutputParser
#dotenv_path = os.path.join(os.getcwd(), ".env")
#load_dotenv(dotenv_path)
#api_key = os.getenv("NVIDIA_API_KEY")
#os.environ["NVIDIA_API_KEY"] = api_key
load_dotenv()
api_key = os.environ.get("NVIDIA_API_KEY")
if not api_key:
raise RuntimeError("🚨 NVIDIA_API_KEY not found in environment! Please add it in Hugging Face Secrets.")
# Constants
FAISS_PATH = "faiss_store/v61_600_150"
CHUNKS_PATH = "all_chunks.json"
if not Path(FAISS_PATH).exists():
raise FileNotFoundError(f"FAISS index not found at {FAISS_PATH}")
if not Path(CHUNKS_PATH).exists():
raise FileNotFoundError(f"Chunks file not found at {CHUNKS_PATH}")
KRISHNA_BIO = """Krishna Vamsi Dhulipalla completed masters in Computer Science at Virginia Tech, awarded degree in december 2024, with over 3 years of experience across data engineering, machine learning research, and real-time analytics. He specializes in building scalable data systems and intelligent LLM-powered applications, with strong expertise in Python, PyTorch, Hugging Face Transformers, and end-to-end ML pipelines.
He has led projects involving retrieval-augmented generation (RAG), feature selection for genomic classification, fine-tuning domain-specific LLMs (e.g., DNABERT, HyenaDNA), and real-time forecasting systems using Kafka, Spark, and Airflow. His cloud proficiency spans AWS (S3, SageMaker, ECS, CloudWatch), GCP (BigQuery, Cloud Composer), and DevOps tools like Docker, Kubernetes, and MLflow.
Krishna’s research has focused on genomic sequence modeling, transformer optimization, MLOps automation, and cross-domain generalization. He has published work in bioinformatics and machine learning applications for circadian transcription prediction and transcription factor binding.
He holds certifications in NVIDIA’s RAG Agents with LLMs, Google Cloud Data Engineering, and AWS ML Specialization. Krishna is passionate about scalable LLM infrastructure, data-centric AI, and domain-adaptive ML solutions — combining deep technical expertise with real-world engineering impact.
\n\n
Beside carrer, Krishna loves hiking, cricket, and exploring new technologies. He is big fan of Marvel Movies and Space exploration.
"""
def initialize_console():
console = Console()
base_style = Style(color="#76B900", bold=True)
return partial(console.print, style=base_style)
pprint = initialize_console()
def PPrint(preface="State: "):
def print_and_return(x, preface=""):
pprint(preface, x)
return x
return RunnableLambda(partial(print_and_return, preface=preface))
def load_chunks_from_json(path: str = CHUNKS_PATH) -> List[Dict]:
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
def load_faiss(path: str = FAISS_PATH,
model_name: str = "sentence-transformers/all-MiniLM-L6-v2") -> FAISS:
embeddings = HuggingFaceEmbeddings(model_name=model_name)
return FAISS.load_local(path, embeddings, allow_dangerous_deserialization=True)
def initialize_resources():
vectorstore = load_faiss()
all_chunks = load_chunks_from_json()
all_texts = [chunk["text"] for chunk in all_chunks]
metadatas = [chunk["metadata"] for chunk in all_chunks]
return vectorstore, all_chunks, all_texts, metadatas
vectorstore, all_chunks, all_texts, metadatas = initialize_resources()
bm25_retriever = BM25Retriever.from_texts(texts=all_texts, metadatas=metadatas)
# Define the KnowledgeBase model
class KnowledgeBase(BaseModel):
user_name: str = Field('unknown', description="The name of the user chatting with Krishna's assistant, or 'unknown' if not provided")
company: Optional[str] = Field(None, description="The company or organization the user is associated with, if mentioned")
last_input: str = Field("", description="The most recent user question or message")
last_output: str = Field("", description="The most recent assistant response to the user")
summary_history: List[str] = Field(default_factory=list, description="Summarized conversation history over turns")
recent_interests: List[str] = Field(default_factory=list, description="User's recurring interests or topics they ask about, e.g., 'LLMs', 'Krishna's research', 'career advice'")
last_followups: List[str] = Field(default_factory=list, description="List of follow-up suggestions from the last assistant response")
tone: Optional[Literal['formal', 'casual', 'playful', 'direct', 'uncertain']] = Field(None, description="Inferred tone or attitude from the user based on recent input")
# Initialize the knowledge base
# knowledge_base = KnowledgeBase()
user_kbs = {}
kb_lock = Lock()
# LLMs
# repharser_llm = ChatNVIDIA(model="mistralai/mistral-7b-instruct-v0.3") | StrOutputParser()
repharser_llm = ChatNVIDIA(model="microsoft/phi-3-mini-4k-instruct") | StrOutputParser()
# instruct_llm = ChatNVIDIA(model="mistralai/mixtral-8x22b-instruct-v0.1") | StrOutputParser()
instruct_llm = ChatNVIDIA(model="mistralai/mistral-7b-instruct-v0.3") | StrOutputParser()
relevance_llm = ChatNVIDIA(model="nvidia/llama-3.1-nemotron-70b-instruct") | StrOutputParser()
answer_llm = ChatOpenAI(
model="gpt-4o",
temperature=0.3,
openai_api_key=os.getenv("OPENAI_API_KEY"),
streaming=True
) | StrOutputParser()
# Prompts
repharser_prompt = ChatPromptTemplate.from_template(
"You are a smart retrieval assistant helping a search engine understand user intent more precisely.\n\n"
"Given a user question, generate **1 diverse rewrite** that is semantically equivalent but phrased differently. \n"
"The rewrite should be optimized for **retrieval from a hybrid system** using BM25 (keyword match) and dense vector embeddings.\n\n"
"Guidelines:\n"
"- Expand abbreviations or implied intent when useful\n"
"- Add relevant technical terms, tools, frameworks, or synonyms (e.g., 'LLM', 'pipeline', 'project')\n"
"- Rephrase using different sentence structure or tone\n"
"- Use field-specific vocabulary (e.g., data science, ML, software, research) if it fits the query\n"
"- Prioritize clarity and retrievability over stylistic variation\n\n"
"Original Question:\n{query}\n\n"
"Rewrite:\n1."
)
relevance_prompt = ChatPromptTemplate.from_template("""
You are Krishna's personal AI assistant classifier.
Your job is to decide whether a user's question can be meaningfully answered using the provided document chunks **or** relevant user memory.
Return a JSON object:
- "is_out_of_scope": true if the chunks and memory cannot help answer the question
- "justification": a short sentence explaining your decision
---
Special instructions:
✅ Treat short or vague queries like "yes", "tell me more", "go on", or "give me" as follow-up prompts.
Assume the user is asking for **continuation** of the previous assistant response or follow-ups stored in memory. Consider that context as *in-scope*.
✅ Also consider if the user's question can be answered using stored memory (like their name, company, interests, or last follow-up topics).
Do NOT classify these types of queries as "out of scope".
Only mark as out-of-scope if the user asks something truly unrelated to both:
- Krishna's background
- Stored user memory
---
Examples:
Q: "Tell me more"
Chunks: previously retrieved info about Krishna's ML tools
Memory: User previously asked about PyTorch and ML pipelines
Output:
{{
"is_out_of_scope": false,
"justification": "User is requesting a follow-up to a valid context, based on prior conversation"
}}
Q: "What is Krishna's Hogwarts house?"
Chunks: None about fiction
Memory: User hasn't mentioned fiction/fantasy
Output:
{{
"is_out_of_scope": true,
"justification": "The question is unrelated to Krishna or user context"
}}
---
Now your turn.
User Question:
"{query}"
Chunks:
{contents}
User Memory (Knowledge Base):
{memory}
Return ONLY the JSON object.
""")
answer_prompt_relevant = ChatPromptTemplate.from_template(
"You are Krishna's personal AI assistant. Your job is to answer the user’s question clearly, thoroughly, and professionally using the provided context.\n"
"Rather than copying sentences, synthesize relevant insights and explain them like a knowledgeable peer.\n\n"
"Use relevant memory about the user to personalize the answer where appropriate.\n\n"
"Krishna's Background:\n{profile}\n\n"
"User Memory (Knowledge Base):\n{memory}\n\n"
"Context:\n{context}\n\n"
"Instructions:\n"
"- Format your response in **Markdown** for readability.\n"
"- Use **section headings with emojis** to organize the answer when helpful (e.g., 🔍 Overview, 🛠️ Tools Used, 📈 Real-World Impact).\n"
"- Use bullet points or bold text to highlight tools, skills, or project names.\n"
"- Add paragraph breaks between major ideas.\n"
"- Keep the tone conversational and helpful — like a smart peer explaining something.\n"
"- If the user asks about Krishna’s work experience, provide a **chronological summary** of his roles and key contributions (e.g., UJR, Virginia Tech).\n"
"- You may use general knowledge to briefly explain tools (like PyTorch or Kafka), but **do not invent any new facts** about Krishna.\n"
"- Avoid filler phrases, repetition, or generic praise (e.g., strengths) unless directly asked.\n"
"- End with a friendly follow-up question (no subheading needed here).\n\n"
"Now generate the answer for the following:\n\n"
"User Question:\n{query}\n\n"
"Answer:"
)
answer_prompt_fallback = ChatPromptTemplate.from_template(
"You are Krishna’s personal AI assistant. The user asked a question unrelated to Krishna’s background.\n"
"Respond with a touch of humor, then guide the conversation back to Krishna’s actual skills, experiences, or projects.\n\n"
"Make it clear that everything you mention afterward comes from Krishna's actual profile.\n\n"
"Krishna's Background:\n{profile}\n\n"
"User Memory (Knowledge Base):\n{memory}\n\n"
"User Question:\n{query}\n\n"
"Your Answer:"
)
parser_prompt = ChatPromptTemplate.from_template(
"You are Krishna's personal AI assistant, and your task is to maintain a memory of the user you're chatting with.\n"
"You just received a new user message and provided a response.\n"
"Please update the knowledge base using the schema below.\n\n"
"{format_instructions}\n\n"
"Previous Knowledge Base:\n{know_base}\n\n"
"Latest Assistant Response:\n{output}\n\n"
"Latest User Message:\n{input}\n\n"
"Return ONLY the updated knowledge base JSON:\n"
"If the assistant’s response includes follow-up suggestions or continuation prompts (like 'Would you like to learn more about...'), store them in the `last_followups` field."
)
# Helper Functions
def parse_rewrites(raw_response: str) -> list[str]:
lines = raw_response.strip().split("\n")
return [line.strip("0123456789. ").strip() for line in lines if line.strip()][:1]
def hybrid_retrieve(inputs, exclude_terms=None):
bm25_retriever = inputs["bm25_retriever"]
all_queries = inputs["all_queries"]
bm25_retriever.k = inputs["k_per_query"]
vectorstore = inputs["vectorstore"]
alpha = inputs["alpha"]
top_k = inputs.get("top_k", 30)
k_per_query = inputs["k_per_query"]
scored_chunks = defaultdict(lambda: {
"vector_scores": [],
"bm25_score": 0.0,
"content": None,
"metadata": None,
})
def process_subquery(subquery, k=k_per_query):
vec_hits = vectorstore.similarity_search_with_score(subquery, k=k)
bm_hits = bm25_retriever.invoke(subquery)
vec_results = [
(hashlib.md5(doc.page_content.encode("utf-8")).hexdigest(), doc, score)
for doc, score in vec_hits
]
bm_results = [
(hashlib.md5(doc.page_content.encode("utf-8")).hexdigest(), doc, 1.0 / (rank + 1))
for rank, doc in enumerate(bm_hits)
]
return vec_results, bm_results
# Process each subquery serially
for subquery in all_queries:
vec_results, bm_results = process_subquery(subquery)
for key, doc, vec_score in vec_results:
scored_chunks[key]["vector_scores"].append(vec_score)
scored_chunks[key]["content"] = doc.page_content
scored_chunks[key]["metadata"] = doc.metadata
for key, doc, bm_score in bm_results:
scored_chunks[key]["bm25_score"] += bm_score
scored_chunks[key]["content"] = doc.page_content
scored_chunks[key]["metadata"] = doc.metadata
all_vec_means = [np.mean(v["vector_scores"]) for v in scored_chunks.values() if v["vector_scores"]]
max_vec = max(all_vec_means) if all_vec_means else 1
min_vec = min(all_vec_means) if all_vec_means else 0
final_results = []
for chunk in scored_chunks.values():
vec_score = np.mean(chunk["vector_scores"]) if chunk["vector_scores"] else 0.0
norm_vec = 0.5 if max_vec == min_vec else (vec_score - min_vec) / (max_vec - min_vec)
bm25_score = chunk["bm25_score"] / len(all_queries)
final_score = alpha * norm_vec + (1 - alpha) * bm25_score
content = chunk["content"].lower()
if final_score < 0.01 or len(content.strip()) < 40:
continue
final_results.append({
"content": chunk["content"],
"source": chunk["metadata"].get("source", ""),
"final_score": float(round(final_score, 4))
})
final_results = sorted(final_results, key=lambda x: x["final_score"], reverse=True)
seen = set()
unique_chunks = []
for chunk in final_results:
clean_text = re.sub(r'\W+', '', chunk["content"].lower())[:300]
fingerprint = (chunk["source"], clean_text)
if fingerprint not in seen:
seen.add(fingerprint)
unique_chunks.append(chunk)
unique_chunks = unique_chunks[:top_k]
return {
"query": inputs["query"],
"chunks": unique_chunks
}
def safe_json_parse(s: str) -> Dict:
try:
if isinstance(s, str) and "is_out_of_scope" in s:
return json.loads(s)
except json.JSONDecodeError:
pass
return {
"is_out_of_scope": True,
"justification": "Fallback due to invalid or missing LLM output"
}
# Rewrite generation
rephraser_chain = (
repharser_prompt
| repharser_llm
| RunnableLambda(parse_rewrites)
)
generate_rewrites_chain = (
RunnableAssign({
"rewrites": lambda x: rephraser_chain.invoke({"query": x["query"]})
})
| RunnableAssign({
"all_queries": lambda x: [x["query"]] + x["rewrites"]
})
)
# Retrieval
retrieve_chain = RunnableLambda(hybrid_retrieve)
hybrid_chain = generate_rewrites_chain | retrieve_chain
# Validation
extract_validation_inputs = RunnableLambda(lambda x: {
"query": x["query"],
"contents": [c["content"] for c in x["chunks"]],
"memory": x["memory"]
})
validation_chain = (
extract_validation_inputs
| relevance_prompt
| instruct_llm
| RunnableLambda(safe_json_parse)
)
# Answer Generation
def prepare_answer_inputs(x: Dict) -> Dict:
context = KRISHNA_BIO if x["validation"]["is_out_of_scope"] else "\n\n".join(
[chunk["content"] for chunk in x["chunks"]]
)
return {
"query": x["query"],
"profile": KRISHNA_BIO,
"context": context,
"use_fallback": x["validation"]["is_out_of_scope"],
"memory": x["memory"]
}
select_and_prompt = RunnableLambda(lambda x:
answer_prompt_fallback.invoke(x) if x["use_fallback"]
else answer_prompt_relevant.invoke(x))
answer_chain = (
prepare_answer_inputs
| select_and_prompt
#| relevance_llm
| answer_llm
)
def RExtract(pydantic_class: Type[BaseModel], llm, prompt):
"""
Runnable Extraction module for updating Krishna Assistant's KnowledgeBase.
Fills in a structured schema using PydanticOutputParser.
"""
parser = PydanticOutputParser(pydantic_object=pydantic_class)
instruct_merge = RunnableAssign({
'format_instructions': lambda x: parser.get_format_instructions()
})
def preparse(raw: str):
# Clean malformed LLM outputs
if '{' not in raw: raw = '{' + raw
if '}' not in raw: raw = raw + '}'
return (raw
.replace("\\_", "_")
.replace("\n", " ")
.replace("\]", "]")
.replace("\[", "[")
)
return instruct_merge | prompt | llm | RunnableLambda(preparse) | parser
knowledge_extractor = RExtract(
pydantic_class=KnowledgeBase,
llm=instruct_llm,
prompt=parser_prompt
)
def get_knowledge_base(session_id: str) -> KnowledgeBase:
"""Get or create a knowledge base for a session"""
with kb_lock:
if session_id not in user_kbs:
user_kbs[session_id] = KnowledgeBase()
return user_kbs[session_id]
def update_knowledge_base(session_id: str, user_input: str, assistant_response: str):
"""Update the knowledge base for a specific session"""
try:
kb = get_knowledge_base(session_id)
kb_input = {
"know_base": kb.model_dump_json(),
"input": user_input,
"output": assistant_response
}
new_kb = knowledge_extractor.invoke(kb_input)
with kb_lock:
user_kbs[session_id] = new_kb
print(f"✅ KNOWLEDGE BASE UPDATED FOR SESSION {session_id}")
except Exception as e:
print(f"❌ KNOWLEDGE BASE UPDATE FAILED: {str(e)}")
# New chain to preserve memory through the pipeline
preserve_memory_chain = RunnableLambda(lambda x: {
**hybrid_chain.invoke(x),
"memory": x["memory"]
})
# Full pipeline
full_pipeline = (
preserve_memory_chain
| RunnableAssign({"validation": validation_chain})
| answer_chain
)
def chat_interface(message, history, request: gr.Request):
"""Modified chat interface with session support"""
session_id = request.session_hash
kb = get_knowledge_base(session_id)
# Initialize inputs with session-specific KB
inputs = {
"query": message,
"all_queries": [message],
"all_texts": all_chunks,
"k_per_query": 7,
"alpha": 0.5,
"vectorstore": vectorstore,
"bm25_retriever": bm25_retriever,
"memory": kb.model_dump_json()
}
full_response = ""
for chunk in full_pipeline.stream(inputs):
if isinstance(chunk, str):
full_response += chunk
yield full_response
# Update KB after response
if full_response:
update_knowledge_base(session_id, message, full_response)
demo = gr.ChatInterface(
fn=chat_interface,
title="💬 Ask Krishna's AI Assistant",
css= """
html, body {
margin: 0;
padding: 0;
overflow-x: hidden; /* prevent horizontal scrollbars on body */
}
.column:nth-child(2) {
max-width: 800px;
margin: 0 auto;
width: 100%;
}
.gradio-container{
max-width: 1000px !important;
margin: 0 auto;
width:100%;
}
.float {
display: none;
}
.bubble-wrap {
background: #0f0f11 !important;
}
.gr-group {
border-radius: 2rem !important;
}
.flex {
border: none !important;
}
footer {
display: none !important;
}
::-webkit-scrollbar {
width: 1px;
height: 1px;
}
::-webkit-scrollbar-track {
background: transparent;
}
::-webkit-scrollbar-thumb {
background-color: rgba(255, 255, 255, 0.05); /* very light thumb */
border-radius: 10px;
}
/* Scrollbar - Firefox */
* {
scrollbar-width: thin;
scrollbar-color: rgba(255,255,255,0.05) transparent;
}
""",
examples=[
"Give me an overview of Krishna Vamsi Dhulipalla's work experience across different roles?",
"What programming languages and tools does Krishna use for data science?",
"Can this chatbot tell me what Krishna's chatbot architecture looks like and how it works?"
]
)
# Launch with request support
demo.queue()
demo.launch(
max_threads=4,
prevent_thread_lock=True,
debug=True
) |