File size: 21,263 Bytes
fd1d0b8
 
 
 
0320bf7
 
 
 
f4bb2ee
fd1d0b8
 
 
44ac5ee
5757dad
fd1d0b8
 
 
 
5757dad
fd1d0b8
 
 
 
 
5757dad
22bbe4e
c43e786
fd1d0b8
5757dad
fd1d0b8
 
 
 
 
f4bb2ee
fd1d0b8
 
 
 
 
a5f6b8b
fd1d0b8
43f39e7
 
 
 
 
 
 
4d88a84
fd1d0b8
5757dad
4d88a84
 
 
 
fd1d0b8
 
 
 
 
 
 
 
4d88a84
 
 
 
 
 
fd1d0b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab32d1c
 
5757dad
 
 
 
 
 
 
 
 
 
 
 
44ac5ee
 
 
5757dad
fd1d0b8
5757dad
 
44ac5ee
 
22bbe4e
fd1d0b8
5757dad
fd1d0b8
0320bf7
 
fd1d0b8
 
 
 
 
22bbe4e
 
 
 
 
 
 
 
 
4d88a84
22bbe4e
fd1d0b8
 
 
2fa0d66
5757dad
 
 
 
fd1d0b8
5757dad
 
 
 
 
 
 
 
 
2fa0d66
5757dad
 
 
fd1d0b8
 
5757dad
 
fd1d0b8
5757dad
 
 
fd1d0b8
 
5757dad
 
fd1d0b8
 
 
 
 
 
 
5757dad
 
 
fd1d0b8
 
 
5757dad
fd1d0b8
5757dad
fd1d0b8
5757dad
fd1d0b8
5757dad
 
 
 
 
 
 
 
 
 
 
fd1d0b8
 
 
 
 
 
2fa0d66
ab32d1c
fd1d0b8
5757dad
fd1d0b8
 
 
5757dad
 
 
 
 
 
 
 
 
 
 
 
 
fd1d0b8
 
 
22bbe4e
fd1d0b8
 
ab32d1c
fd1d0b8
 
 
 
4d88a84
ab32d1c
fd1d0b8
 
 
 
 
 
 
4d88a84
 
 
fd1d0b8
4d88a84
 
 
 
 
 
 
 
 
 
 
ab32d1c
fd1d0b8
4d88a84
 
 
 
 
 
 
 
 
 
 
 
 
 
fd1d0b8
 
 
 
 
 
 
4d88a84
fd1d0b8
 
 
 
4d88a84
fd1d0b8
 
 
 
 
4d88a84
fd1d0b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5189775
2fa0d66
5189775
 
 
 
 
 
fd1d0b8
2fa0d66
fd1d0b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5757dad
44ac5ee
fd1d0b8
 
 
 
 
4d5f0e8
fd1d0b8
 
 
 
 
 
2fa0d66
 
 
fd1d0b8
 
 
 
5757dad
44ac5ee
fd1d0b8
 
 
 
 
 
 
 
 
8bd123f
 
fd1d0b8
 
5757dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d5f0e8
5757dad
 
 
44ac5ee
 
 
 
 
 
 
 
 
5757dad
44ac5ee
5757dad
44ac5ee
aedbc59
 
5757dad
 
44ac5ee
 
 
5757dad
aedbc59
5757dad
44ac5ee
 
 
 
 
fd1d0b8
44ac5ee
 
 
 
 
 
fd1d0b8
44ac5ee
 
 
 
 
 
c48f9e1
 
 
 
a1b71de
4d88a84
c48f9e1
ab32d1c
44ac5ee
c48f9e1
44ac5ee
5757dad
4d5f0e8
44ac5ee
5757dad
 
44ac5ee
 
aedbc59
44ac5ee
43f39e7
8bd123f
 
 
 
 
8a3a868
 
8bd123f
8a3a868
8bd123f
 
8a3a868
8bd123f
8a3a868
c7da115
 
 
 
 
8bd123f
 
8a3a868
8bd123f
 
8a3a868
8bd123f
 
8a3a868
8bd123f
 
8a3a868
8bd123f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f6509e
44ac5ee
0320bf7
4d88a84
44ac5ee
2f6509e
44ac5ee
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import os
import json
import re
import hashlib
import os
import json
import re
import hashlib
import gradio as gr
from functools import partial
from collections import defaultdict
from pathlib import Path
from threading import Lock
from typing import List, Dict, Any, Optional, List, Literal, Type
import numpy as np
from dotenv import load_dotenv
from rich.console import Console
from rich.style import Style
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
from langchain_nvidia_ai_endpoints import ChatNVIDIA
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain.schema.runnable.passthrough import RunnableAssign
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.retrievers import BM25Retriever
from langchain_openai import ChatOpenAI
from langchain.output_parsers import PydanticOutputParser

#dotenv_path = os.path.join(os.getcwd(), ".env")
#load_dotenv(dotenv_path)
#api_key = os.getenv("NVIDIA_API_KEY")
#os.environ["NVIDIA_API_KEY"] = api_key
load_dotenv()
api_key = os.environ.get("NVIDIA_API_KEY")
if not api_key:
    raise RuntimeError("🚨 NVIDIA_API_KEY not found in environment! Please add it in Hugging Face Secrets.")

# Constants
FAISS_PATH = "faiss_store/v61_600_150"
CHUNKS_PATH = "all_chunks.json"

if not Path(FAISS_PATH).exists():
    raise FileNotFoundError(f"FAISS index not found at {FAISS_PATH}")

if not Path(CHUNKS_PATH).exists():
    raise FileNotFoundError(f"Chunks file not found at {CHUNKS_PATH}")

KRISHNA_BIO = """Krishna Vamsi Dhulipalla completed masters in Computer Science at Virginia Tech, awarded degree in december 2024, with over 3 years of experience across data engineering, machine learning research, and real-time analytics. He specializes in building scalable data systems and intelligent LLM-powered applications, with strong expertise in Python, PyTorch, Hugging Face Transformers, and end-to-end ML pipelines.
He has led projects involving retrieval-augmented generation (RAG), feature selection for genomic classification, fine-tuning domain-specific LLMs (e.g., DNABERT, HyenaDNA), and real-time forecasting systems using Kafka, Spark, and Airflow. His cloud proficiency spans AWS (S3, SageMaker, ECS, CloudWatch), GCP (BigQuery, Cloud Composer), and DevOps tools like Docker, Kubernetes, and MLflow.
Krishna’s research has focused on genomic sequence modeling, transformer optimization, MLOps automation, and cross-domain generalization. He has published work in bioinformatics and machine learning applications for circadian transcription prediction and transcription factor binding.
He holds certifications in NVIDIA’s RAG Agents with LLMs, Google Cloud Data Engineering, and AWS ML Specialization. Krishna is passionate about scalable LLM infrastructure, data-centric AI, and domain-adaptive ML solutions — combining deep technical expertise with real-world engineering impact.
\n\n
Beside carrer, Krishna loves hiking, cricket, and exploring new technologies. He is big fan of Marvel Movies and Space exploration.
"""

def initialize_console():
    console = Console()
    base_style = Style(color="#76B900", bold=True)
    return partial(console.print, style=base_style)

pprint = initialize_console()

def PPrint(preface="State: "):
    def print_and_return(x, preface=""):
        pprint(preface, x)
        return x
    return RunnableLambda(partial(print_and_return, preface=preface))

def load_chunks_from_json(path: str = CHUNKS_PATH) -> List[Dict]:
    with open(path, "r", encoding="utf-8") as f:
        return json.load(f)

def load_faiss(path: str = FAISS_PATH, 
               model_name: str = "sentence-transformers/all-MiniLM-L6-v2") -> FAISS:
    embeddings = HuggingFaceEmbeddings(model_name=model_name)
    return FAISS.load_local(path, embeddings, allow_dangerous_deserialization=True)

def initialize_resources():
    vectorstore = load_faiss()
    all_chunks = load_chunks_from_json()
    all_texts = [chunk["text"] for chunk in all_chunks]
    metadatas = [chunk["metadata"] for chunk in all_chunks]
    return vectorstore, all_chunks, all_texts, metadatas

vectorstore, all_chunks, all_texts, metadatas = initialize_resources()

bm25_retriever = BM25Retriever.from_texts(texts=all_texts, metadatas=metadatas)

# Define the KnowledgeBase model
class KnowledgeBase(BaseModel):
    user_name: str = Field('unknown', description="The name of the user chatting with Krishna's assistant, or 'unknown' if not provided")
    company: Optional[str] = Field(None, description="The company or organization the user is associated with, if mentioned")
    last_input: str = Field("", description="The most recent user question or message")
    last_output: str = Field("", description="The most recent assistant response to the user")
    summary_history: List[str] = Field(default_factory=list, description="Summarized conversation history over turns")
    recent_interests: List[str] = Field(default_factory=list, description="User's recurring interests or topics they ask about, e.g., 'LLMs', 'Krishna's research', 'career advice'")
    last_followups: List[str] = Field(default_factory=list, description="List of follow-up suggestions from the last assistant response")
    tone: Optional[Literal['formal', 'casual', 'playful', 'direct', 'uncertain']] = Field(None, description="Inferred tone or attitude from the user based on recent input")

# Initialize the knowledge base
# knowledge_base = KnowledgeBase()
user_kbs = {}
kb_lock = Lock()

# LLMs
# repharser_llm = ChatNVIDIA(model="mistralai/mistral-7b-instruct-v0.3") | StrOutputParser()
repharser_llm = ChatNVIDIA(model="microsoft/phi-3-mini-4k-instruct") | StrOutputParser()
# instruct_llm = ChatNVIDIA(model="mistralai/mixtral-8x22b-instruct-v0.1") | StrOutputParser()
instruct_llm = ChatNVIDIA(model="mistralai/mistral-7b-instruct-v0.3") | StrOutputParser()
relevance_llm = ChatNVIDIA(model="nvidia/llama-3.1-nemotron-70b-instruct") | StrOutputParser()
answer_llm = ChatOpenAI(
    model="gpt-4o",              
    temperature=0.3,             
    openai_api_key=os.getenv("OPENAI_API_KEY"),
    streaming=True
) | StrOutputParser()


# Prompts
repharser_prompt = ChatPromptTemplate.from_template(
    "You are a smart retrieval assistant helping a search engine understand user intent more precisely.\n\n"
    "Given a user question, generate **1 diverse rewrite** that is semantically equivalent but phrased differently. \n"
    "The rewrite should be optimized for **retrieval from a hybrid system** using BM25 (keyword match) and dense vector embeddings.\n\n"
    "Guidelines:\n"
    "- Expand abbreviations or implied intent when useful\n"
    "- Add relevant technical terms, tools, frameworks, or synonyms (e.g., 'LLM', 'pipeline', 'project')\n"
    "- Rephrase using different sentence structure or tone\n"
    "- Use field-specific vocabulary (e.g., data science, ML, software, research) if it fits the query\n"
    "- Prioritize clarity and retrievability over stylistic variation\n\n"
    "Original Question:\n{query}\n\n"
    "Rewrite:\n1."
)

relevance_prompt = ChatPromptTemplate.from_template("""
You are Krishna's personal AI assistant classifier.
Your job is to decide whether a user's question can be meaningfully answered using the provided document chunks **or** relevant user memory.
Return a JSON object:
- "is_out_of_scope": true if the chunks and memory cannot help answer the question
- "justification": a short sentence explaining your decision
---
Special instructions:
✅ Treat short or vague queries like "yes", "tell me more", "go on", or "give me" as follow-up prompts. 
Assume the user is asking for **continuation** of the previous assistant response or follow-ups stored in memory. Consider that context as *in-scope*.
✅ Also consider if the user's question can be answered using stored memory (like their name, company, interests, or last follow-up topics).
Do NOT classify these types of queries as "out of scope".
Only mark as out-of-scope if the user asks something truly unrelated to both:
- Krishna's background
- Stored user memory
---
Examples:
Q: "Tell me more"
Chunks: previously retrieved info about Krishna's ML tools  
Memory: User previously asked about PyTorch and ML pipelines
Output:
{{
  "is_out_of_scope": false,
  "justification": "User is requesting a follow-up to a valid context, based on prior conversation"
}}
Q: "What is Krishna's Hogwarts house?"
Chunks: None about fiction  
Memory: User hasn't mentioned fiction/fantasy
Output:
{{
  "is_out_of_scope": true,
  "justification": "The question is unrelated to Krishna or user context"
}}
---
Now your turn.
User Question:
"{query}"
Chunks:
{contents}
User Memory (Knowledge Base):
{memory}
Return ONLY the JSON object.
""")

answer_prompt_relevant = ChatPromptTemplate.from_template(
    "You are Krishna's personal AI assistant. Your job is to answer the user’s question clearly, thoroughly, and professionally using the provided context.\n"
    "Rather than copying sentences, synthesize relevant insights and explain them like a knowledgeable peer.\n\n"
    "Use relevant memory about the user to personalize the answer where appropriate.\n\n"
    "Krishna's Background:\n{profile}\n\n"
    "User Memory (Knowledge Base):\n{memory}\n\n"
    "Context:\n{context}\n\n"
    "Instructions:\n"
    "- Format your response in **Markdown** for readability.\n"
    "- Use **section headings with emojis** to organize the answer when helpful (e.g., 🔍 Overview, 🛠️ Tools Used, 📈 Real-World Impact).\n"
    "- Use bullet points or bold text to highlight tools, skills, or project names.\n"
    "- Add paragraph breaks between major ideas.\n"
    "- Keep the tone conversational and helpful — like a smart peer explaining something.\n"
    "- If the user asks about Krishna’s work experience, provide a **chronological summary** of his roles and key contributions (e.g., UJR, Virginia Tech).\n"
    "- You may use general knowledge to briefly explain tools (like PyTorch or Kafka), but **do not invent any new facts** about Krishna.\n"
    "- Avoid filler phrases, repetition, or generic praise (e.g., strengths) unless directly asked.\n"
    "- End with a friendly follow-up question (no subheading needed here).\n\n"
    "Now generate the answer for the following:\n\n"
    "User Question:\n{query}\n\n"
    "Answer:"
)

answer_prompt_fallback = ChatPromptTemplate.from_template(
    "You are Krishna’s personal AI assistant. The user asked a question unrelated to Krishna’s background.\n"
    "Respond with a touch of humor, then guide the conversation back to Krishna’s actual skills, experiences, or projects.\n\n"
    "Make it clear that everything you mention afterward comes from Krishna's actual profile.\n\n"
    "Krishna's Background:\n{profile}\n\n"
    "User Memory (Knowledge Base):\n{memory}\n\n"
    "User Question:\n{query}\n\n"
    "Your Answer:"
)

parser_prompt = ChatPromptTemplate.from_template(
    "You are Krishna's personal AI assistant, and your task is to maintain a memory of the user you're chatting with.\n"
    "You just received a new user message and provided a response.\n"
    "Please update the knowledge base using the schema below.\n\n"
    "{format_instructions}\n\n"
    "Previous Knowledge Base:\n{know_base}\n\n"
    "Latest Assistant Response:\n{output}\n\n"
    "Latest User Message:\n{input}\n\n"
    "Return ONLY the updated knowledge base JSON:\n"
    "If the assistant’s response includes follow-up suggestions or continuation prompts (like 'Would you like to learn more about...'), store them in the `last_followups` field."
)

# Helper Functions
def parse_rewrites(raw_response: str) -> list[str]:
    lines = raw_response.strip().split("\n")
    return [line.strip("0123456789. ").strip() for line in lines if line.strip()][:1]

def hybrid_retrieve(inputs, exclude_terms=None):
    bm25_retriever = inputs["bm25_retriever"]
    all_queries = inputs["all_queries"]
    bm25_retriever.k = inputs["k_per_query"]
    vectorstore = inputs["vectorstore"]
    alpha = inputs["alpha"]
    top_k = inputs.get("top_k", 30)
    k_per_query = inputs["k_per_query"]

    scored_chunks = defaultdict(lambda: {
        "vector_scores": [],
        "bm25_score": 0.0,
        "content": None,
        "metadata": None,
    })

    def process_subquery(subquery, k=k_per_query):
        vec_hits = vectorstore.similarity_search_with_score(subquery, k=k)
        bm_hits = bm25_retriever.invoke(subquery)

        vec_results = [
            (hashlib.md5(doc.page_content.encode("utf-8")).hexdigest(), doc, score)
            for doc, score in vec_hits
        ]

        bm_results = [
            (hashlib.md5(doc.page_content.encode("utf-8")).hexdigest(), doc, 1.0 / (rank + 1))
            for rank, doc in enumerate(bm_hits)
        ]

        return vec_results, bm_results

    # Process each subquery serially
    for subquery in all_queries:
        vec_results, bm_results = process_subquery(subquery)

        for key, doc, vec_score in vec_results:
            scored_chunks[key]["vector_scores"].append(vec_score)
            scored_chunks[key]["content"] = doc.page_content
            scored_chunks[key]["metadata"] = doc.metadata

        for key, doc, bm_score in bm_results:
            scored_chunks[key]["bm25_score"] += bm_score
            scored_chunks[key]["content"] = doc.page_content
            scored_chunks[key]["metadata"] = doc.metadata

    all_vec_means = [np.mean(v["vector_scores"]) for v in scored_chunks.values() if v["vector_scores"]]
    max_vec = max(all_vec_means) if all_vec_means else 1
    min_vec = min(all_vec_means) if all_vec_means else 0

    final_results = []
    for chunk in scored_chunks.values():
        vec_score = np.mean(chunk["vector_scores"]) if chunk["vector_scores"] else 0.0
        norm_vec = 0.5 if max_vec == min_vec else (vec_score - min_vec) / (max_vec - min_vec)
        bm25_score = chunk["bm25_score"] / len(all_queries)
        final_score = alpha * norm_vec + (1 - alpha) * bm25_score

        content = chunk["content"].lower()
        if final_score < 0.01 or len(content.strip()) < 40:
            continue

        final_results.append({
            "content": chunk["content"],
            "source": chunk["metadata"].get("source", ""),
            "final_score": float(round(final_score, 4))
        })

    final_results = sorted(final_results, key=lambda x: x["final_score"], reverse=True)

    seen = set()
    unique_chunks = []
    for chunk in final_results:
        clean_text = re.sub(r'\W+', '', chunk["content"].lower())[:300]
        fingerprint = (chunk["source"], clean_text)
        if fingerprint not in seen:
            seen.add(fingerprint)
            unique_chunks.append(chunk)

    unique_chunks = unique_chunks[:top_k]

    return {
        "query": inputs["query"],
        "chunks": unique_chunks
    }
    
def safe_json_parse(s: str) -> Dict:
    try:
        if isinstance(s, str) and "is_out_of_scope" in s:
            return json.loads(s)
    except json.JSONDecodeError:
        pass
    return {
        "is_out_of_scope": True,
        "justification": "Fallback due to invalid or missing LLM output"
    }
    
# Rewrite generation
rephraser_chain = (
    repharser_prompt
    | repharser_llm
    | RunnableLambda(parse_rewrites)
)

generate_rewrites_chain = (
    RunnableAssign({
        "rewrites": lambda x: rephraser_chain.invoke({"query": x["query"]})
    })
    | RunnableAssign({
        "all_queries": lambda x: [x["query"]] + x["rewrites"]
    })
)

# Retrieval
retrieve_chain = RunnableLambda(hybrid_retrieve)
hybrid_chain = generate_rewrites_chain | retrieve_chain

# Validation
extract_validation_inputs = RunnableLambda(lambda x: {
    "query": x["query"],
    "contents": [c["content"] for c in x["chunks"]],
    "memory": x["memory"]  
})

validation_chain = (
    extract_validation_inputs
    | relevance_prompt
    | instruct_llm
    | RunnableLambda(safe_json_parse)
)

# Answer Generation
def prepare_answer_inputs(x: Dict) -> Dict:
    context = KRISHNA_BIO if x["validation"]["is_out_of_scope"] else "\n\n".join(
        [chunk["content"] for chunk in x["chunks"]]
    )

    return {
        "query": x["query"],
        "profile": KRISHNA_BIO,
        "context": context,
        "use_fallback": x["validation"]["is_out_of_scope"],
        "memory": x["memory"] 
    }

select_and_prompt = RunnableLambda(lambda x: 
    answer_prompt_fallback.invoke(x) if x["use_fallback"]
    else answer_prompt_relevant.invoke(x))

answer_chain = (
    prepare_answer_inputs
    | select_and_prompt
    #| relevance_llm
    | answer_llm
)

def RExtract(pydantic_class: Type[BaseModel], llm, prompt):
    """
    Runnable Extraction module for updating Krishna Assistant's KnowledgeBase.
    Fills in a structured schema using PydanticOutputParser.
    """
    parser = PydanticOutputParser(pydantic_object=pydantic_class)
    instruct_merge = RunnableAssign({
        'format_instructions': lambda x: parser.get_format_instructions()
    })

    def preparse(raw: str):
        # Clean malformed LLM outputs
        if '{' not in raw: raw = '{' + raw
        if '}' not in raw: raw = raw + '}'
        return (raw
                .replace("\\_", "_")
                .replace("\n", " ")
                .replace("\]", "]")
                .replace("\[", "[")
        )

    return instruct_merge | prompt | llm | RunnableLambda(preparse) | parser

knowledge_extractor = RExtract(
    pydantic_class=KnowledgeBase,
    llm=instruct_llm,            
    prompt=parser_prompt        
)

def get_knowledge_base(session_id: str) -> KnowledgeBase:
    """Get or create a knowledge base for a session"""
    with kb_lock:
        if session_id not in user_kbs:
            user_kbs[session_id] = KnowledgeBase()
        return user_kbs[session_id]

def update_knowledge_base(session_id: str, user_input: str, assistant_response: str):
    """Update the knowledge base for a specific session"""
    try:
        kb = get_knowledge_base(session_id)
        kb_input = {
            "know_base": kb.model_dump_json(),
            "input": user_input,
            "output": assistant_response
        }
        new_kb = knowledge_extractor.invoke(kb_input)
        with kb_lock:
            user_kbs[session_id] = new_kb
        print(f"✅ KNOWLEDGE BASE UPDATED FOR SESSION {session_id}")
    except Exception as e:
        print(f"❌ KNOWLEDGE BASE UPDATE FAILED: {str(e)}")

# New chain to preserve memory through the pipeline
preserve_memory_chain = RunnableLambda(lambda x: {
    **hybrid_chain.invoke(x),  
    "memory": x["memory"]     
})

# Full pipeline
full_pipeline = (
    preserve_memory_chain 
    | RunnableAssign({"validation": validation_chain}) 
    | answer_chain
)

def chat_interface(message, history, request: gr.Request):
    """Modified chat interface with session support"""
    session_id = request.session_hash
    kb = get_knowledge_base(session_id)
    
    # Initialize inputs with session-specific KB
    inputs = {
        "query": message,
        "all_queries": [message],
        "all_texts": all_chunks,
        "k_per_query": 7,
        "alpha": 0.5,
        "vectorstore": vectorstore,
        "bm25_retriever": bm25_retriever,
        "memory": kb.model_dump_json()
    }
    
    full_response = ""
    for chunk in full_pipeline.stream(inputs):
        if isinstance(chunk, str):
            full_response += chunk
            yield full_response
    
    # Update KB after response
    if full_response:
        update_knowledge_base(session_id, message, full_response) 

demo = gr.ChatInterface(
    fn=chat_interface,
    title="💬 Ask Krishna's AI Assistant",
    css= """
    html, body {
        margin: 0;
        padding: 0;
        overflow-x: hidden; /* prevent horizontal scrollbars on body */
    }
    .column:nth-child(2) {
        max-width: 800px;
        margin: 0 auto;
        width: 100%;
    }
    .gradio-container{
        max-width: 1000px !important;
        margin: 0 auto;
        width:100%;
    }
    .float {
        display: none;
    }
    .bubble-wrap {
        background: #0f0f11 !important;
    }
    .gr-group {
        border-radius: 2rem !important;
    }
    .flex {
        border: none !important;
    }
    footer {
        display: none !important;
    }
    ::-webkit-scrollbar {
    width: 1px;
    height: 1px;
}

::-webkit-scrollbar-track {
    background: transparent;
}

::-webkit-scrollbar-thumb {
    background-color: rgba(255, 255, 255, 0.05); /* very light thumb */
    border-radius: 10px;
}

/* Scrollbar - Firefox */
* {
    scrollbar-width: thin;
    scrollbar-color: rgba(255,255,255,0.05) transparent;
}
    """,
    examples=[
        "Give me an overview of Krishna Vamsi Dhulipalla's work experience across different roles?",
        "What programming languages and tools does Krishna use for data science?",
        "Can this chatbot tell me what Krishna's chatbot architecture looks like and how it works?"
    ]
)
# Launch with request support
demo.queue()
demo.launch(
    max_threads=4,
    prevent_thread_lock=True,
    debug=True
)