Update app.py
Browse files
app.py
CHANGED
@@ -105,7 +105,8 @@ knowledge_base = KnowledgeBase()
|
|
105 |
# repharser_llm = ChatNVIDIA(model="mistralai/mistral-7b-instruct-v0.3") | StrOutputParser()
|
106 |
repharser_llm = ChatNVIDIA(model="microsoft/phi-3-mini-4k-instruct") | StrOutputParser()
|
107 |
validation_llm = ChatNVIDIA(model="microsoft/phi-3-small-8k-instruct") | StrOutputParser()
|
108 |
-
instruct_llm = ChatNVIDIA(model="mistralai/
|
|
|
109 |
relevance_llm = ChatNVIDIA(model="nvidia/llama-3.1-nemotron-70b-instruct") | StrOutputParser()
|
110 |
answer_llm = ChatOpenAI(
|
111 |
model="gpt-4o",
|
@@ -369,7 +370,7 @@ extract_validation_inputs = RunnableLambda(lambda x: {
|
|
369 |
validation_chain = (
|
370 |
extract_validation_inputs
|
371 |
| relevance_prompt
|
372 |
-
|
|
373 |
| RunnableLambda(safe_json_parse)
|
374 |
)
|
375 |
|
@@ -422,7 +423,7 @@ def RExtract(pydantic_class: Type[BaseModel], llm, prompt):
|
|
422 |
|
423 |
knowledge_extractor = RExtract(
|
424 |
pydantic_class=KnowledgeBase,
|
425 |
-
llm=
|
426 |
prompt=parser_prompt
|
427 |
)
|
428 |
|
@@ -469,14 +470,10 @@ def chat_interface(message, history):
|
|
469 |
"vectorstore": vectorstore,
|
470 |
"bm25_retriever": bm25_retriever,
|
471 |
}
|
472 |
-
|
473 |
-
hybrid_result = hybrid_chain.invoke(inputs)
|
474 |
-
hybrid_result["validation"] = validation_chain.invoke(hybrid_result)
|
475 |
-
|
476 |
full_response = ""
|
477 |
|
478 |
# Stream the response to user
|
479 |
-
for chunk in
|
480 |
if isinstance(chunk, dict) and "answer" in chunk:
|
481 |
full_response += chunk["answer"]
|
482 |
yield full_response
|
|
|
105 |
# repharser_llm = ChatNVIDIA(model="mistralai/mistral-7b-instruct-v0.3") | StrOutputParser()
|
106 |
repharser_llm = ChatNVIDIA(model="microsoft/phi-3-mini-4k-instruct") | StrOutputParser()
|
107 |
validation_llm = ChatNVIDIA(model="microsoft/phi-3-small-8k-instruct") | StrOutputParser()
|
108 |
+
instruct_llm = ChatNVIDIA(model="mistralai/mistral-7b-instruct-v0.2") | StrOutputParser()
|
109 |
+
#instruct_llm = ChatNVIDIA(model="mistralai/mixtral-8x22b-instruct-v0.1") | StrOutputParser()
|
110 |
relevance_llm = ChatNVIDIA(model="nvidia/llama-3.1-nemotron-70b-instruct") | StrOutputParser()
|
111 |
answer_llm = ChatOpenAI(
|
112 |
model="gpt-4o",
|
|
|
370 |
validation_chain = (
|
371 |
extract_validation_inputs
|
372 |
| relevance_prompt
|
373 |
+
| instruct_llm
|
374 |
| RunnableLambda(safe_json_parse)
|
375 |
)
|
376 |
|
|
|
423 |
|
424 |
knowledge_extractor = RExtract(
|
425 |
pydantic_class=KnowledgeBase,
|
426 |
+
llm=instruct_llm,
|
427 |
prompt=parser_prompt
|
428 |
)
|
429 |
|
|
|
470 |
"vectorstore": vectorstore,
|
471 |
"bm25_retriever": bm25_retriever,
|
472 |
}
|
|
|
|
|
|
|
|
|
473 |
full_response = ""
|
474 |
|
475 |
# Stream the response to user
|
476 |
+
for chunk in full_pipeline.stream(inputs):
|
477 |
if isinstance(chunk, dict) and "answer" in chunk:
|
478 |
full_response += chunk["answer"]
|
479 |
yield full_response
|