katanaml's picture
Sparrow Parse
42cd5f6
from rag.agents.interface import Pipeline
from openai import OpenAI
import instructor
from .helpers.instructor_helper import execute_sparrow_processor, merge_dicts, track_query_output
from .helpers.instructor_helper import add_answer_page
from sparrow_parse.extractor.html_extractor import HTMLExtractor
from sparrow_parse.extractor.unstructured_processor import UnstructuredProcessor
from sparrow_parse.extractor.pdf_optimizer import PDFOptimizer
from pydantic import create_model
from typing import List
from rich.progress import Progress, SpinnerColumn, TextColumn
import timeit
from rich import print
from typing import Any
import shutil
import json
import box
import yaml
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
# Import config vars
with open('config.yml', 'r', encoding='utf8') as ymlfile:
cfg = box.Box(yaml.safe_load(ymlfile))
class InstructorPipeline(Pipeline):
def run_pipeline(self,
payload: str,
query_inputs: [str],
query_types: [str],
keywords: [str],
query: str,
file_path: str,
index_name: str,
options: List[str] = None,
group_by_rows: bool = True,
update_targets: bool = True,
debug: bool = False,
local: bool = True) -> Any:
print(f"\nRunning pipeline with {payload}\n")
# Import config vars
with open('config.yml', 'r', encoding='utf8') as ymlfile:
cfg = box.Box(yaml.safe_load(ymlfile))
start = timeit.default_timer()
strategy = cfg.STRATEGY_INSTRUCTOR
model_name = cfg.MODEL_INSTRUCTOR
similarity_threshold_junk = cfg.SIMILARITY_THRESHOLD_JUNK_COLUMNS_INSTRUCTOR
similarity_threshold_column_id = cfg.SIMILARITY_THRESHOLD_COLUMN_ID_INSTRUCTOR
pdf_split_output_dir = None if cfg.PDF_SPLIT_OUTPUT_DIR_INSTRUCTOR == "" else cfg.PDF_SPLIT_OUTPUT_DIR_INSTRUCTOR
pdf_convert_to_images = cfg.PDF_CONVERT_TO_IMAGES_INSTRUCTOR
answer = '{}'
answer_form = '{}'
validate_options = self.validate_options(options)
if validate_options:
if options and "tables" in options:
pdf_optimizer = PDFOptimizer()
num_pages, output_files, temp_dir = pdf_optimizer.split_pdf_to_pages(file_path,
pdf_split_output_dir,
pdf_convert_to_images)
if debug:
print(f'The PDF file has {num_pages} pages.')
print('The pages are stored in the following files:')
for file in output_files:
print(file)
# support for multipage docs
query_inputs_form, query_types_form = self.filter_fields_query(query_inputs, query_types, "form")
for i, page in enumerate(output_files):
content, table_contents = execute_sparrow_processor(options, page, strategy, model_name, local, debug)
if debug:
print(f"Query form inputs: {query_inputs_form}")
print(f"Query form types: {query_types_form}")
if len(query_inputs_form) > 0:
query_form = "retrieve " + ", ".join(query_inputs_form)
answer_form = self.execute(query_inputs_form, query_types_form, content, query_form, 'form', debug, local)
query_inputs_form, query_types_form = track_query_output(query_inputs_form, answer_form, query_types_form)
if debug:
print(f"Answer from LLM: {answer_form}")
print(f"Unprocessed query targets: {query_inputs_form}")
answer_table = {}
if table_contents is not None:
query_targets, query_targets_types = self.filter_fields_query(query_inputs, query_types, "table")
extractor = HTMLExtractor()
answer_table, targets_unprocessed = extractor.read_data(query_targets, table_contents,
similarity_threshold_junk,
similarity_threshold_column_id,
keywords, group_by_rows, update_targets,
local, debug)
if num_pages > 1:
answer_current = merge_dicts(answer_form, answer_table)
answer_current_page = add_answer_page({}, "page" + str(i + 1), answer_current)
answer = merge_dicts(answer, json.dumps(answer_current_page))
answer_form = '{}'
else:
answer = merge_dicts(answer_form, answer_table)
answer = self.format_json_output(answer)
shutil.rmtree(temp_dir, ignore_errors=True)
else:
# No options provided
processor = UnstructuredProcessor()
content, table_content = processor.extract_data(file_path, strategy, model_name, None, local, debug)
answer = self.execute(query_inputs, query_types, content, query, 'all', debug, local)
else:
raise ValueError(
"Invalid combination of options provided. Only 'tables and html' or 'tables and markdown' are allowed.")
end = timeit.default_timer()
print(f"\nJSON response:\n")
print(answer)
print('\n')
print('=' * 50)
print(f"Time to retrieve answer: {end - start}")
return answer
def execute(self, query_inputs, query_types, content, query, mode, debug, local):
if mode == 'form' or mode == 'all':
ResponseModel = self.invoke_pipeline_step(lambda: self.build_response_class(query_inputs, query_types),
"Building dynamic response class for " + mode + " data...",
local)
answer = self.invoke_pipeline_step(
lambda: self.execute_query(query, content, ResponseModel, mode),
"Executing query for " + mode + " data...",
local
)
return answer
def execute_query(self, query, content, ResponseModel, mode):
client = instructor.from_openai(
OpenAI(
base_url=cfg.OLLAMA_BASE_URL_INSTRUCTOR,
api_key="ollama",
),
mode=instructor.Mode.JSON,
)
resp = []
if mode == 'form' or mode == 'all':
resp = client.chat.completions.create(
model=cfg.LLM_INSTRUCTOR,
messages=[
{
"role": "user",
"content": f"{query} from the following content {content}. if query field value is missing, return None."
}
],
response_model=ResponseModel,
max_retries=3
)
answer = resp.model_dump_json(indent=4)
return answer
def filter_fields_query(self, query_inputs, query_types, mode):
fields = []
for query_input, query_type in zip(query_inputs, query_types):
if mode == "form" and query_type.startswith("List") is False:
fields.append((query_input, query_type))
elif mode == "table" and query_type.startswith("List") is True:
fields.append((query_input, query_type))
# return filtered query_inputs and query_types as two array of strings
query_inputs = [field[0] for field in fields]
query_types = [field[1] for field in fields]
return query_inputs, query_types
# Function to safely evaluate type strings
def safe_eval_type(self, type_str, context):
try:
return eval(type_str, {}, context)
except NameError:
raise ValueError(f"Type '{type_str}' is not recognized")
def build_response_class(self, query_inputs, query_types_as_strings):
# Controlled context for eval
context = {
'List': List,
'str': str,
'int': int,
'float': float
# Include other necessary types or typing constructs here
}
query_types_as_strings = [s.replace('Array', 'List') for s in query_types_as_strings]
# Convert string representations to actual types
query_types = [self.safe_eval_type(type_str, context) for type_str in query_types_as_strings]
# Create fields dictionary
fields = {name: (type_, ...) for name, type_ in zip(query_inputs, query_types)}
DynamicModel = create_model('DynamicModel', **fields)
return DynamicModel
def validate_options(self, options: List[str]) -> bool:
# Define valid combinations
valid_combinations = [
["tables", "unstructured"],
["tables", "markdown"]
]
# Check for valid combinations or empty list
if not options: # Valid if no options are provided
return True
if sorted(options) in (sorted(combination) for combination in valid_combinations):
return True
return False
def format_json_output(self, answer):
formatted_json = json.dumps(answer, indent=4)
formatted_json = formatted_json.replace('", "', '",\n"')
formatted_json = formatted_json.replace('}, {', '},\n{')
return formatted_json
def invoke_pipeline_step(self, task_call, task_description, local):
if local:
with Progress(
SpinnerColumn(),
TextColumn("[progress.description]{task.description}"),
transient=False,
) as progress:
progress.add_task(description=task_description, total=None)
ret = task_call()
else:
print(task_description)
ret = task_call()
return ret