File size: 10,633 Bytes
42cd5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from rag.agents.interface import Pipeline
from openai import OpenAI
import instructor
from .helpers.instructor_helper import execute_sparrow_processor, merge_dicts, track_query_output
from .helpers.instructor_helper import add_answer_page
from sparrow_parse.extractor.html_extractor import HTMLExtractor
from sparrow_parse.extractor.unstructured_processor import UnstructuredProcessor
from sparrow_parse.extractor.pdf_optimizer import PDFOptimizer
from pydantic import create_model
from typing import List
from rich.progress import Progress, SpinnerColumn, TextColumn
import timeit
from rich import print
from typing import Any
import shutil
import json
import box
import yaml
import warnings


warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)


# Import config vars
with open('config.yml', 'r', encoding='utf8') as ymlfile:
    cfg = box.Box(yaml.safe_load(ymlfile))


class InstructorPipeline(Pipeline):
    def run_pipeline(self,
                     payload: str,
                     query_inputs: [str],
                     query_types: [str],
                     keywords: [str],
                     query: str,
                     file_path: str,
                     index_name: str,
                     options: List[str] = None,
                     group_by_rows: bool = True,
                     update_targets: bool = True,
                     debug: bool = False,
                     local: bool = True) -> Any:
        print(f"\nRunning pipeline with {payload}\n")

        # Import config vars
        with open('config.yml', 'r', encoding='utf8') as ymlfile:
            cfg = box.Box(yaml.safe_load(ymlfile))

        start = timeit.default_timer()

        strategy = cfg.STRATEGY_INSTRUCTOR
        model_name = cfg.MODEL_INSTRUCTOR
        similarity_threshold_junk = cfg.SIMILARITY_THRESHOLD_JUNK_COLUMNS_INSTRUCTOR
        similarity_threshold_column_id = cfg.SIMILARITY_THRESHOLD_COLUMN_ID_INSTRUCTOR
        pdf_split_output_dir = None if cfg.PDF_SPLIT_OUTPUT_DIR_INSTRUCTOR == "" else cfg.PDF_SPLIT_OUTPUT_DIR_INSTRUCTOR
        pdf_convert_to_images = cfg.PDF_CONVERT_TO_IMAGES_INSTRUCTOR

        answer = '{}'
        answer_form = '{}'

        validate_options = self.validate_options(options)
        if validate_options:
            if options and "tables" in options:
                pdf_optimizer = PDFOptimizer()
                num_pages, output_files, temp_dir = pdf_optimizer.split_pdf_to_pages(file_path,
                                                                                     pdf_split_output_dir,
                                                                                     pdf_convert_to_images)

                if debug:
                    print(f'The PDF file has {num_pages} pages.')
                    print('The pages are stored in the following files:')
                    for file in output_files:
                        print(file)

                # support for multipage docs
                query_inputs_form, query_types_form = self.filter_fields_query(query_inputs, query_types, "form")

                for i, page in enumerate(output_files):
                    content, table_contents = execute_sparrow_processor(options, page, strategy, model_name, local, debug)

                    if debug:
                        print(f"Query form inputs: {query_inputs_form}")
                        print(f"Query form types: {query_types_form}")
                    if len(query_inputs_form) > 0:
                        query_form = "retrieve " + ", ".join(query_inputs_form)
                        answer_form = self.execute(query_inputs_form, query_types_form, content, query_form, 'form', debug, local)
                        query_inputs_form, query_types_form = track_query_output(query_inputs_form, answer_form, query_types_form)
                        if debug:
                            print(f"Answer from LLM: {answer_form}")
                            print(f"Unprocessed query targets: {query_inputs_form}")

                    answer_table = {}
                    if table_contents is not None:
                        query_targets, query_targets_types = self.filter_fields_query(query_inputs, query_types, "table")
                        extractor = HTMLExtractor()

                        answer_table, targets_unprocessed = extractor.read_data(query_targets, table_contents,
                                                                                similarity_threshold_junk,
                                                                                similarity_threshold_column_id,
                                                                                keywords, group_by_rows, update_targets,
                                                                                local, debug)

                    if num_pages > 1:
                        answer_current = merge_dicts(answer_form, answer_table)
                        answer_current_page = add_answer_page({}, "page" + str(i + 1), answer_current)
                        answer = merge_dicts(answer, json.dumps(answer_current_page))
                        answer_form = '{}'
                    else:
                        answer = merge_dicts(answer_form, answer_table)

                    answer = self.format_json_output(answer)

                shutil.rmtree(temp_dir, ignore_errors=True)
            else:
                # No options provided
                processor = UnstructuredProcessor()
                content, table_content = processor.extract_data(file_path, strategy, model_name, None, local, debug)
                answer = self.execute(query_inputs, query_types, content, query, 'all', debug, local)
        else:
            raise ValueError(
                "Invalid combination of options provided. Only 'tables and html' or 'tables and markdown' are allowed.")

        end = timeit.default_timer()

        print(f"\nJSON response:\n")
        print(answer)
        print('\n')
        print('=' * 50)

        print(f"Time to retrieve answer: {end - start}")

        return answer

    def execute(self, query_inputs, query_types, content, query, mode, debug, local):
        if mode == 'form' or mode == 'all':
            ResponseModel = self.invoke_pipeline_step(lambda: self.build_response_class(query_inputs, query_types),
                                                      "Building dynamic response class for " + mode + " data...",
                                                      local)

        answer = self.invoke_pipeline_step(
            lambda: self.execute_query(query, content, ResponseModel, mode),
            "Executing query for " + mode + " data...",
            local
        )

        return answer

    def execute_query(self, query, content, ResponseModel, mode):
        client = instructor.from_openai(
            OpenAI(
                base_url=cfg.OLLAMA_BASE_URL_INSTRUCTOR,
                api_key="ollama",
            ),
            mode=instructor.Mode.JSON,
        )

        resp = []
        if mode == 'form' or mode == 'all':
            resp = client.chat.completions.create(
                model=cfg.LLM_INSTRUCTOR,
                messages=[
                    {
                        "role": "user",
                        "content": f"{query} from the following content {content}. if query field value is missing, return None."
                    }
                ],
                response_model=ResponseModel,
                max_retries=3
            )

        answer = resp.model_dump_json(indent=4)

        return answer

    def filter_fields_query(self, query_inputs, query_types, mode):
        fields = []

        for query_input, query_type in zip(query_inputs, query_types):
            if mode == "form" and query_type.startswith("List") is False:
                fields.append((query_input, query_type))
            elif mode == "table" and query_type.startswith("List") is True:
                fields.append((query_input, query_type))

        # return filtered query_inputs and query_types as two array of strings
        query_inputs = [field[0] for field in fields]
        query_types = [field[1] for field in fields]

        return query_inputs, query_types

    # Function to safely evaluate type strings
    def safe_eval_type(self, type_str, context):
        try:
            return eval(type_str, {}, context)
        except NameError:
            raise ValueError(f"Type '{type_str}' is not recognized")

    def build_response_class(self, query_inputs, query_types_as_strings):
        # Controlled context for eval
        context = {
            'List': List,
            'str': str,
            'int': int,
            'float': float
            # Include other necessary types or typing constructs here
        }

        query_types_as_strings = [s.replace('Array', 'List') for s in query_types_as_strings]

        # Convert string representations to actual types
        query_types = [self.safe_eval_type(type_str, context) for type_str in query_types_as_strings]

        # Create fields dictionary
        fields = {name: (type_, ...) for name, type_ in zip(query_inputs, query_types)}

        DynamicModel = create_model('DynamicModel', **fields)

        return DynamicModel

    def validate_options(self, options: List[str]) -> bool:
        # Define valid combinations
        valid_combinations = [
            ["tables", "unstructured"],
            ["tables", "markdown"]
        ]

        # Check for valid combinations or empty list
        if not options:  # Valid if no options are provided
            return True
        if sorted(options) in (sorted(combination) for combination in valid_combinations):
            return True
        return False

    def format_json_output(self, answer):
        formatted_json = json.dumps(answer, indent=4)
        formatted_json = formatted_json.replace('", "', '",\n"')
        formatted_json = formatted_json.replace('}, {', '},\n{')
        return formatted_json

    def invoke_pipeline_step(self, task_call, task_description, local):
        if local:
            with Progress(
                    SpinnerColumn(),
                    TextColumn("[progress.description]{task.description}"),
                    transient=False,
            ) as progress:
                progress.add_task(description=task_description, total=None)
                ret = task_call()
        else:
            print(task_description)
            ret = task_call()

        return ret