Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,83 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
-
import tiktoken
|
4 |
-
from dataclasses import dataclass
|
5 |
import torch.nn as nn
|
6 |
from torch.nn import functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
@dataclass
|
9 |
class GPTConfig:
|
@@ -119,65 +193,108 @@ class GPT(nn.Module):
|
|
119 |
return model
|
120 |
|
121 |
|
122 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
@st.cache_resource
|
124 |
def load_model():
|
|
|
125 |
config = GPTConfig()
|
126 |
model = GPT(config)
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
st.title("GPT Text Generator")
|
167 |
-
st.write("Enter your text and specify the length of additional text to generate.")
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
172 |
|
173 |
if st.button("Generate"):
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
|
|
|
|
3 |
import torch.nn as nn
|
4 |
from torch.nn import functional as F
|
5 |
+
import tiktoken
|
6 |
+
import sys
|
7 |
+
import os
|
8 |
+
import logging
|
9 |
+
import warnings
|
10 |
+
from dataclasses import dataclass
|
11 |
+
import math
|
12 |
+
|
13 |
+
class MLP(nn.Module):
|
14 |
+
|
15 |
+
def __init__(self, config):
|
16 |
+
super().__init__()
|
17 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
18 |
+
self.gelu = nn.GELU(approximate='tanh')
|
19 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
20 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
x = self.c_fc(x)
|
24 |
+
x = self.gelu(x)
|
25 |
+
x = self.c_proj(x)
|
26 |
+
return x
|
27 |
+
|
28 |
+
|
29 |
+
class CausalSelfAttention(nn.Module):
|
30 |
+
|
31 |
+
def __init__(self, config):
|
32 |
+
super().__init__()
|
33 |
+
assert config.n_embd % config.n_head == 0
|
34 |
+
# key, query, value projections for all heads, but in a batch
|
35 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
36 |
+
# output projection
|
37 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
38 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
39 |
+
# regularization
|
40 |
+
self.n_head = config.n_head
|
41 |
+
self.n_embd = config.n_embd
|
42 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
46 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
47 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
48 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
49 |
+
qkv = self.c_attn(x)
|
50 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
51 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
52 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
53 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
54 |
+
|
55 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
56 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
57 |
+
att = F.softmax(att, dim=-1)
|
58 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
59 |
+
|
60 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
61 |
+
# output projection
|
62 |
+
y = self.c_proj(y)
|
63 |
+
return y
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
class Block(nn.Module):
|
68 |
+
|
69 |
+
def __init__(self, config):
|
70 |
+
super().__init__()
|
71 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
72 |
+
self.attn = CausalSelfAttention(config)
|
73 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
74 |
+
self.mlp = MLP(config)
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
x = x + self.attn(self.ln_1(x))
|
78 |
+
x = x + self.mlp(self.ln_2(x))
|
79 |
+
return x
|
80 |
+
|
81 |
|
82 |
@dataclass
|
83 |
class GPTConfig:
|
|
|
193 |
return model
|
194 |
|
195 |
|
196 |
+
# Configure logging and warnings
|
197 |
+
logging.getLogger('streamlit').setLevel(logging.ERROR)
|
198 |
+
warnings.filterwarnings('ignore', message='.*torch.classes.*')
|
199 |
+
warnings.filterwarnings('ignore', category=FutureWarning)
|
200 |
+
|
201 |
+
# Add the project root to Python path
|
202 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
@st.cache_resource
|
207 |
def load_model():
|
208 |
+
device = "cpu"
|
209 |
config = GPTConfig()
|
210 |
model = GPT(config)
|
211 |
+
|
212 |
+
# Load the trained weights from root directory
|
213 |
+
checkpoint = torch.load('trained_model_quantized.pt', map_location=device, weights_only=True)
|
214 |
+
|
215 |
+
# Handle pruned weights
|
216 |
+
state_dict = checkpoint['model_state_dict']
|
217 |
+
new_state_dict = {}
|
218 |
+
|
219 |
+
for key in model.state_dict().keys():
|
220 |
+
if key.endswith('.weight'):
|
221 |
+
# Check if this is a pruned weight
|
222 |
+
orig_key = key[:-7] + '.weight_orig' if key.endswith('.weight') else key
|
223 |
+
mask_key = key[:-7] + '.weight_mask' if key.endswith('.weight') else key
|
224 |
+
|
225 |
+
if orig_key in state_dict and mask_key in state_dict:
|
226 |
+
# Reconstruct the pruned weight
|
227 |
+
new_state_dict[key] = state_dict[orig_key] * state_dict[mask_key]
|
228 |
+
else:
|
229 |
+
# Use the weight as is
|
230 |
+
new_state_dict[key] = state_dict[key] if key in state_dict else model.state_dict()[key]
|
231 |
+
else:
|
232 |
+
# Copy non-weight parameters as is
|
233 |
+
new_state_dict[key] = state_dict[key] if key in state_dict else model.state_dict()[key]
|
234 |
+
|
235 |
+
# Load the processed state dict
|
236 |
+
model.load_state_dict(new_state_dict)
|
237 |
+
|
238 |
+
# Convert back to float32 for inference
|
239 |
+
model = model.float()
|
240 |
+
model.to(device)
|
241 |
+
model.eval()
|
242 |
+
|
243 |
+
return model, device
|
244 |
+
|
245 |
+
def generate_text(model, prompt, max_length=100, num_return_sequences=1, device='cpu'):
|
246 |
+
tokenizer = tiktoken.get_encoding('gpt2')
|
247 |
+
input_tokens = tokenizer.encode(prompt)
|
248 |
+
x = torch.tensor(input_tokens).unsqueeze(0).repeat(num_return_sequences, 1)
|
249 |
+
x = x.to(device)
|
250 |
+
|
251 |
+
# Calculate final length (input length + requested additional tokens)
|
252 |
+
input_length = x.size(1)
|
253 |
+
target_length = input_length + max_length
|
254 |
+
|
255 |
+
# Generate text
|
256 |
+
with torch.no_grad():
|
257 |
+
while x.size(1) < target_length:
|
258 |
+
logits = model(x)[0]
|
259 |
+
next_token_logits = logits[:, -1, :]
|
260 |
+
probs = torch.softmax(next_token_logits, dim=-1)
|
261 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
262 |
+
x = torch.cat((x, next_token), dim=1)
|
263 |
+
|
264 |
+
# Print token information once before generating sequences
|
265 |
+
st.text(f"Size of Input tokens: {input_length}, Additional tokens to be predicted: {max_length}, Total tokens to be generated: {x.size(1)}")
|
266 |
+
|
267 |
+
# Decode generated sequences
|
268 |
+
generated_texts = []
|
269 |
+
for i in range(num_return_sequences):
|
270 |
+
tokens = x[i].tolist()
|
271 |
+
text = tokenizer.decode(tokens)
|
272 |
+
generated_texts.append(text)
|
273 |
+
|
274 |
+
return generated_texts
|
275 |
+
|
276 |
+
# Streamlit UI
|
277 |
st.title("GPT Text Generator")
|
|
|
278 |
|
279 |
+
# Load model
|
280 |
+
model, device = load_model()
|
281 |
+
|
282 |
+
# Input form
|
283 |
+
prompt = st.text_area("Enter your prompt:", "Once upon a time")
|
284 |
+
max_length = st.slider("Predict additional text of length:", min_value=1, max_value=50, value=5)
|
285 |
+
num_sequences = st.slider("Number of sequences to generate:", 1, 5, 1)
|
286 |
|
287 |
if st.button("Generate"):
|
288 |
+
with st.spinner("Generating text..."):
|
289 |
+
generated_texts = generate_text(
|
290 |
+
model=model,
|
291 |
+
prompt=prompt,
|
292 |
+
max_length=max_length,
|
293 |
+
num_return_sequences=num_sequences,
|
294 |
+
device=device
|
295 |
+
)
|
296 |
+
|
297 |
+
# Display results
|
298 |
+
for i, text in enumerate(generated_texts, 1):
|
299 |
+
st.write(f"\nSequence {i}:")
|
300 |
+
st.write(text)
|