kalekarnn commited on
Commit
0506cd6
·
verified ·
1 Parent(s): 1826a9b

Delete transformer.py

Browse files
Files changed (1) hide show
  1. transformer.py +0 -346
transformer.py DELETED
@@ -1,346 +0,0 @@
1
- # Solving for residual std scaling issue
2
- import os
3
- import math
4
- import time
5
- from dataclasses import dataclass
6
- import torch
7
- import torch.nn as nn
8
- from torch.nn import functional as F
9
- from tqdm import tqdm # Import tqdm for progress bar
10
- import torch.quantization # Import quantization module
11
- import torch.nn.utils.prune as prune
12
- import tiktoken
13
-
14
-
15
- class CausalSelfAttention(nn.Module):
16
-
17
- def __init__(self, config):
18
- super().__init__()
19
- assert config.n_embd % config.n_head == 0
20
- # key, query, value projections for all heads, but in a batch
21
- self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
22
- # output projection
23
- self.c_proj = nn.Linear(config.n_embd, config.n_embd)
24
- self.c_proj.NANGPT_SCALE_INIT = 1
25
- # regularization
26
- self.n_head = config.n_head
27
- self.n_embd = config.n_embd
28
- self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
29
-
30
- def forward(self, x):
31
- B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
32
- # calculate query, key, values for all heads in batch and move head forward to be the batch dim
33
- # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
34
- # e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
35
- qkv = self.c_attn(x)
36
- q, k, v = qkv.split(self.n_embd, dim=2)
37
- k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
38
- q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
39
- v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
40
-
41
- att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
42
- att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
43
- att = F.softmax(att, dim=-1)
44
- y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
45
-
46
- y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
47
- # output projection
48
- y = self.c_proj(y)
49
- return y
50
-
51
-
52
- class MLP(nn.Module):
53
-
54
- def __init__(self, config):
55
- super().__init__()
56
- self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
57
- self.gelu = nn.GELU(approximate='tanh')
58
- self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
59
- self.c_proj.NANOGPT_SCALE_INIT = 1
60
-
61
- def forward(self, x):
62
- x = self.c_fc(x)
63
- x = self.gelu(x)
64
- x = self.c_proj(x)
65
- return x
66
-
67
- class Block(nn.Module):
68
-
69
- def __init__(self, config):
70
- super().__init__()
71
- self.ln_1 = nn.LayerNorm(config.n_embd)
72
- self.attn = CausalSelfAttention(config)
73
- self.ln_2 = nn.LayerNorm(config.n_embd)
74
- self.mlp = MLP(config)
75
-
76
- def forward(self, x):
77
- x = x + self.attn(self.ln_1(x))
78
- x = x + self.mlp(self.ln_2(x))
79
- return x
80
-
81
-
82
- @dataclass
83
- class GPTConfig:
84
- block_size: int = 1024 # max sequence length
85
- vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
86
- n_layer: int = 12 # number of layers
87
- n_head: int = 12 # number of heads
88
- n_embd: int = 768 # embedding dimension
89
-
90
-
91
- class GPT(nn.Module):
92
-
93
- def __init__(self, config):
94
- super().__init__()
95
- self.config = config
96
-
97
- self.transformer = nn.ModuleDict(dict(
98
- wte = nn.Embedding(config.vocab_size, config.n_embd),
99
- wpe = nn.Embedding(config.block_size, config.n_embd),
100
- h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
101
- ln_f = nn.LayerNorm(config.n_embd),
102
- ))
103
- self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
104
-
105
- # weight sharing
106
- self.transformer.wte.weight = self.lm_head.weight
107
-
108
- # weight initialization
109
- self.apply(self._init_weights)
110
-
111
- def _init_weights(self, module):
112
- if isinstance(module, nn.Linear):
113
- std = 0.02
114
- if hasattr(module, 'NANGPT_SCALE_INIT'):
115
- std *= (2 * self.config.n_layer) ** -0.5
116
- torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
117
- if module.bias is not None:
118
- torch.nn.init.zeros_(module.bias)
119
- elif isinstance(module, nn.Embedding):
120
- torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
121
-
122
- def print_num_parameters(self):
123
- num_params = sum(p.numel() for p in self.parameters())
124
- print(f"Number of model parameters: {num_params}")
125
-
126
- def forward(self, idx, targets=None):
127
- # idx is of shape (B, T)
128
- B, T = idx.size()
129
- assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
130
- # forward the token and posisition embeddings
131
- pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
132
- pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
133
- tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
134
- x = tok_emb + pos_emb
135
- # forward the blocks of the transformer
136
- for block in self.transformer.h:
137
- x = block(x)
138
- # forward the final layernorm and the classifier
139
- x = self.transformer.ln_f(x)
140
- logits = self.lm_head(x) # (B, T, vocab_size)
141
- loss = None
142
- if targets is not None:
143
- loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
144
- return logits, loss
145
-
146
- @classmethod
147
- def from_pretrained(cls, model_type):
148
- """Loads pretrained GPT-2 model weights from huggingface"""
149
- assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
150
- from transformers import GPT2LMHeadModel
151
- print("loading weights from pretrained gpt: %s" % model_type)
152
-
153
- # n_layer, n_head and n_embd are determined from model_type
154
- config_args = {
155
- 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
156
- 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
157
- 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
158
- 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
159
- }[model_type]
160
- config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
161
- config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
162
- # create a from-scratch initialized minGPT model
163
- config = GPTConfig(**config_args)
164
- model = GPT(config)
165
- sd = model.state_dict()
166
- sd_keys = sd.keys()
167
- sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
168
-
169
- # init a huggingface/transformers model
170
- model_hf = GPT2LMHeadModel.from_pretrained(model_type)
171
- sd_hf = model_hf.state_dict()
172
-
173
- # copy while ensuring all of the parameters are aligned and match in names and shapes
174
- sd_keys_hf = sd_hf.keys()
175
- sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
176
- sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
177
- transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
178
- # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
179
- # this means that we have to transpose these weights when we import them
180
- assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
181
- for k in sd_keys_hf:
182
- if any(k.endswith(w) for w in transposed):
183
- # special treatment for the Conv1D weights we need to transpose
184
- assert sd_hf[k].shape[::-1] == sd[k].shape
185
- with torch.no_grad():
186
- sd[k].copy_(sd_hf[k].t())
187
- else:
188
- # vanilla copy over the other parameters
189
- assert sd_hf[k].shape == sd[k].shape
190
- with torch.no_grad():
191
- sd[k].copy_(sd_hf[k])
192
-
193
- return model
194
-
195
-
196
- device = 'cpu'
197
- if torch.cuda.is_available():
198
- device = 'cuda'
199
- elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
200
- device = "mps"
201
- print(f"using device: {device}")
202
-
203
- # SEED
204
- torch.manual_seed(1337)
205
- if torch.cuda.is_available():
206
- torch.cuda.manual_seed(1337)
207
-
208
- class DataLoaderLite:
209
- def __init__(self, B, T):
210
- self.B = B
211
- self.T = T
212
-
213
- # at init load tokens from disk and store them in memory
214
- with open('input.txt', 'r') as f:
215
- text = f.read()
216
- enc = tiktoken.get_encoding('gpt2')
217
- tokens = enc.encode(text)
218
- self.tokens = torch.tensor(tokens, device=device) # Move tokens to the correct device
219
- print(f'loaded {len(self.tokens)} tokens')
220
- print(f'1 epoch = {len(self.tokens)} batches')
221
-
222
- # state
223
- self.current_position = 0
224
-
225
- def next_batch(self):
226
- B, T = self.B, self.T
227
- buf = self.tokens[self.current_position: self.current_position + B * T + 1]
228
- x = (buf[:-1]).view(B, T) # inputs
229
- y = (buf[1:]).view(B, T) # targets
230
- # advance the position in the tensor
231
- self.current_position += B*T
232
- # if loading the next batch would be out of bounds, reset
233
- if self.current_position + (B * T + 1) > len(self.tokens):
234
- self.current_position = 0
235
- return x, y
236
-
237
-
238
- import os
239
- import time
240
- import torch
241
-
242
- # Initialize the model and data loader
243
- config = GPTConfig()
244
- model = GPT(config).to(device) # Move model to the correct device
245
-
246
- # Print the model architecture and number of parameters
247
- print(model)
248
- model.print_num_parameters()
249
-
250
- train_loader = DataLoaderLite(B=4, T=1024)
251
-
252
- # Define the optimizer
253
- optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4)
254
-
255
- # Function to load the most recent checkpoint
256
- def load_latest_checkpoint(model):
257
- checkpoint_file = 'checkpoint.pt'
258
- if not os.path.exists(checkpoint_file):
259
- return 0 # No checkpoint found, start from epoch 0
260
-
261
- print(f'Loading checkpoint from {checkpoint_file}')
262
- checkpoint = torch.load(checkpoint_file, map_location=device) # Load checkpoint to the correct device
263
- model.load_state_dict(checkpoint['model_state_dict'])
264
- return checkpoint['epoch']
265
-
266
- # Load the latest checkpoint if available
267
- start_epoch = load_latest_checkpoint(model)
268
-
269
- # Training loop
270
- num_epochs = 100
271
-
272
- # Start time tracking
273
- start_time = time.time()
274
-
275
- for epoch in range(start_epoch, num_epochs): # Start from the loaded epoch
276
- epoch_loss = 0.0 # Initialize epoch loss
277
- num_steps = 0 # Initialize step counter for the epoch
278
- last_loss = None # Variable to store the last loss
279
-
280
- # Calculate total steps for the progress bar
281
- total_steps = len(train_loader.tokens) // (train_loader.B * train_loader.T)
282
-
283
- # Use tqdm to create a progress bar
284
- with tqdm(total=total_steps, desc=f'Epoch {epoch + 1}/{num_epochs}') as pbar:
285
- for step in range(total_steps): # Iterate over the number of steps
286
- x, y = train_loader.next_batch()
287
- x, y = x.to(device), y.to(device)
288
- optimizer.zero_grad()
289
- logits, loss = model(x, y)
290
- loss.backward()
291
- optimizer.step()
292
-
293
- epoch_loss += loss.item() # Accumulate loss
294
- num_steps += 1 # Increment step counter
295
- last_loss = loss.item() # Store the last loss
296
- pbar.update(1) # Update progress bar
297
-
298
- # Check if the loss is below the threshold
299
- if last_loss < 0.099999:
300
- print(f'Loss below threshold: {last_loss:.6f}') # Print loss before breaking
301
- break # Exit the loop if the loss condition is met
302
-
303
- # Print the loss at the end of the epoch
304
- print(f'Epoch {epoch + 1}/{num_epochs}, Loss: {last_loss:.6f}')
305
-
306
- # Check if the loss condition was met to break out of the epoch loop
307
- if last_loss < 0.099999:
308
- print(f'Early stopping at epoch {epoch + 1} due to loss condition met.')
309
- break # Exit the epoch loop if the loss condition is met
310
-
311
- # Checkpointing: Save the model and the current epoch after each epoch
312
- checkpoint_path = 'checkpoint.pt' # Save to a single checkpoint file
313
- torch.save({
314
- 'epoch': epoch + 1, # Save the current epoch number
315
- 'model_state_dict': model.state_dict(), # Save the model state
316
- }, checkpoint_path)
317
-
318
- # End time tracking
319
- end_time = time.time()
320
- training_duration = end_time - start_time
321
-
322
- # Convert training duration to minutes and seconds
323
- minutes = int(training_duration // 60)
324
- seconds = int(training_duration % 60)
325
-
326
- # Print the total training time in minute:second format
327
- print(f'Total training time: {minutes} minutes and {seconds} seconds')
328
-
329
- # After training your model, apply quantization and save it with compression
330
- def save_model_with_quantization(model, file_path):
331
- # Switch model to evaluation mode
332
- model.eval()
333
-
334
- # Apply dynamic quantization
335
- quantized_model = torch.quantization.quantize_dynamic(
336
- model, # the model to be quantized
337
- {nn.Linear}, # layers to quantize
338
- dtype=torch.qint8 # quantization type
339
- )
340
-
341
- # Save the quantized model with compression
342
- torch.save(quantized_model.state_dict(), file_path, _use_new_zipfile_serialization=True)
343
- print(f'Model saved to {file_path} with quantization and compression.')
344
-
345
- # Call this function after training your model
346
- save_model_with_quantization(model, 'trained_model_quantized.pt')