Spaces:
Runtime error
Runtime error
Delete transformer.py
Browse files- transformer.py +0 -346
transformer.py
DELETED
@@ -1,346 +0,0 @@
|
|
1 |
-
# Solving for residual std scaling issue
|
2 |
-
import os
|
3 |
-
import math
|
4 |
-
import time
|
5 |
-
from dataclasses import dataclass
|
6 |
-
import torch
|
7 |
-
import torch.nn as nn
|
8 |
-
from torch.nn import functional as F
|
9 |
-
from tqdm import tqdm # Import tqdm for progress bar
|
10 |
-
import torch.quantization # Import quantization module
|
11 |
-
import torch.nn.utils.prune as prune
|
12 |
-
import tiktoken
|
13 |
-
|
14 |
-
|
15 |
-
class CausalSelfAttention(nn.Module):
|
16 |
-
|
17 |
-
def __init__(self, config):
|
18 |
-
super().__init__()
|
19 |
-
assert config.n_embd % config.n_head == 0
|
20 |
-
# key, query, value projections for all heads, but in a batch
|
21 |
-
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
22 |
-
# output projection
|
23 |
-
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
24 |
-
self.c_proj.NANGPT_SCALE_INIT = 1
|
25 |
-
# regularization
|
26 |
-
self.n_head = config.n_head
|
27 |
-
self.n_embd = config.n_embd
|
28 |
-
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
29 |
-
|
30 |
-
def forward(self, x):
|
31 |
-
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
32 |
-
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
33 |
-
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
34 |
-
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
35 |
-
qkv = self.c_attn(x)
|
36 |
-
q, k, v = qkv.split(self.n_embd, dim=2)
|
37 |
-
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
38 |
-
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
39 |
-
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
40 |
-
|
41 |
-
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
42 |
-
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
43 |
-
att = F.softmax(att, dim=-1)
|
44 |
-
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
45 |
-
|
46 |
-
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
47 |
-
# output projection
|
48 |
-
y = self.c_proj(y)
|
49 |
-
return y
|
50 |
-
|
51 |
-
|
52 |
-
class MLP(nn.Module):
|
53 |
-
|
54 |
-
def __init__(self, config):
|
55 |
-
super().__init__()
|
56 |
-
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
57 |
-
self.gelu = nn.GELU(approximate='tanh')
|
58 |
-
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
59 |
-
self.c_proj.NANOGPT_SCALE_INIT = 1
|
60 |
-
|
61 |
-
def forward(self, x):
|
62 |
-
x = self.c_fc(x)
|
63 |
-
x = self.gelu(x)
|
64 |
-
x = self.c_proj(x)
|
65 |
-
return x
|
66 |
-
|
67 |
-
class Block(nn.Module):
|
68 |
-
|
69 |
-
def __init__(self, config):
|
70 |
-
super().__init__()
|
71 |
-
self.ln_1 = nn.LayerNorm(config.n_embd)
|
72 |
-
self.attn = CausalSelfAttention(config)
|
73 |
-
self.ln_2 = nn.LayerNorm(config.n_embd)
|
74 |
-
self.mlp = MLP(config)
|
75 |
-
|
76 |
-
def forward(self, x):
|
77 |
-
x = x + self.attn(self.ln_1(x))
|
78 |
-
x = x + self.mlp(self.ln_2(x))
|
79 |
-
return x
|
80 |
-
|
81 |
-
|
82 |
-
@dataclass
|
83 |
-
class GPTConfig:
|
84 |
-
block_size: int = 1024 # max sequence length
|
85 |
-
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
86 |
-
n_layer: int = 12 # number of layers
|
87 |
-
n_head: int = 12 # number of heads
|
88 |
-
n_embd: int = 768 # embedding dimension
|
89 |
-
|
90 |
-
|
91 |
-
class GPT(nn.Module):
|
92 |
-
|
93 |
-
def __init__(self, config):
|
94 |
-
super().__init__()
|
95 |
-
self.config = config
|
96 |
-
|
97 |
-
self.transformer = nn.ModuleDict(dict(
|
98 |
-
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
99 |
-
wpe = nn.Embedding(config.block_size, config.n_embd),
|
100 |
-
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
101 |
-
ln_f = nn.LayerNorm(config.n_embd),
|
102 |
-
))
|
103 |
-
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
104 |
-
|
105 |
-
# weight sharing
|
106 |
-
self.transformer.wte.weight = self.lm_head.weight
|
107 |
-
|
108 |
-
# weight initialization
|
109 |
-
self.apply(self._init_weights)
|
110 |
-
|
111 |
-
def _init_weights(self, module):
|
112 |
-
if isinstance(module, nn.Linear):
|
113 |
-
std = 0.02
|
114 |
-
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
115 |
-
std *= (2 * self.config.n_layer) ** -0.5
|
116 |
-
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
117 |
-
if module.bias is not None:
|
118 |
-
torch.nn.init.zeros_(module.bias)
|
119 |
-
elif isinstance(module, nn.Embedding):
|
120 |
-
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
121 |
-
|
122 |
-
def print_num_parameters(self):
|
123 |
-
num_params = sum(p.numel() for p in self.parameters())
|
124 |
-
print(f"Number of model parameters: {num_params}")
|
125 |
-
|
126 |
-
def forward(self, idx, targets=None):
|
127 |
-
# idx is of shape (B, T)
|
128 |
-
B, T = idx.size()
|
129 |
-
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
130 |
-
# forward the token and posisition embeddings
|
131 |
-
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
132 |
-
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
133 |
-
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
134 |
-
x = tok_emb + pos_emb
|
135 |
-
# forward the blocks of the transformer
|
136 |
-
for block in self.transformer.h:
|
137 |
-
x = block(x)
|
138 |
-
# forward the final layernorm and the classifier
|
139 |
-
x = self.transformer.ln_f(x)
|
140 |
-
logits = self.lm_head(x) # (B, T, vocab_size)
|
141 |
-
loss = None
|
142 |
-
if targets is not None:
|
143 |
-
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
144 |
-
return logits, loss
|
145 |
-
|
146 |
-
@classmethod
|
147 |
-
def from_pretrained(cls, model_type):
|
148 |
-
"""Loads pretrained GPT-2 model weights from huggingface"""
|
149 |
-
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
150 |
-
from transformers import GPT2LMHeadModel
|
151 |
-
print("loading weights from pretrained gpt: %s" % model_type)
|
152 |
-
|
153 |
-
# n_layer, n_head and n_embd are determined from model_type
|
154 |
-
config_args = {
|
155 |
-
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
156 |
-
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
157 |
-
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
158 |
-
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
159 |
-
}[model_type]
|
160 |
-
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
161 |
-
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
162 |
-
# create a from-scratch initialized minGPT model
|
163 |
-
config = GPTConfig(**config_args)
|
164 |
-
model = GPT(config)
|
165 |
-
sd = model.state_dict()
|
166 |
-
sd_keys = sd.keys()
|
167 |
-
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
168 |
-
|
169 |
-
# init a huggingface/transformers model
|
170 |
-
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
171 |
-
sd_hf = model_hf.state_dict()
|
172 |
-
|
173 |
-
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
174 |
-
sd_keys_hf = sd_hf.keys()
|
175 |
-
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
176 |
-
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
177 |
-
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
178 |
-
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
179 |
-
# this means that we have to transpose these weights when we import them
|
180 |
-
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
181 |
-
for k in sd_keys_hf:
|
182 |
-
if any(k.endswith(w) for w in transposed):
|
183 |
-
# special treatment for the Conv1D weights we need to transpose
|
184 |
-
assert sd_hf[k].shape[::-1] == sd[k].shape
|
185 |
-
with torch.no_grad():
|
186 |
-
sd[k].copy_(sd_hf[k].t())
|
187 |
-
else:
|
188 |
-
# vanilla copy over the other parameters
|
189 |
-
assert sd_hf[k].shape == sd[k].shape
|
190 |
-
with torch.no_grad():
|
191 |
-
sd[k].copy_(sd_hf[k])
|
192 |
-
|
193 |
-
return model
|
194 |
-
|
195 |
-
|
196 |
-
device = 'cpu'
|
197 |
-
if torch.cuda.is_available():
|
198 |
-
device = 'cuda'
|
199 |
-
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
200 |
-
device = "mps"
|
201 |
-
print(f"using device: {device}")
|
202 |
-
|
203 |
-
# SEED
|
204 |
-
torch.manual_seed(1337)
|
205 |
-
if torch.cuda.is_available():
|
206 |
-
torch.cuda.manual_seed(1337)
|
207 |
-
|
208 |
-
class DataLoaderLite:
|
209 |
-
def __init__(self, B, T):
|
210 |
-
self.B = B
|
211 |
-
self.T = T
|
212 |
-
|
213 |
-
# at init load tokens from disk and store them in memory
|
214 |
-
with open('input.txt', 'r') as f:
|
215 |
-
text = f.read()
|
216 |
-
enc = tiktoken.get_encoding('gpt2')
|
217 |
-
tokens = enc.encode(text)
|
218 |
-
self.tokens = torch.tensor(tokens, device=device) # Move tokens to the correct device
|
219 |
-
print(f'loaded {len(self.tokens)} tokens')
|
220 |
-
print(f'1 epoch = {len(self.tokens)} batches')
|
221 |
-
|
222 |
-
# state
|
223 |
-
self.current_position = 0
|
224 |
-
|
225 |
-
def next_batch(self):
|
226 |
-
B, T = self.B, self.T
|
227 |
-
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
228 |
-
x = (buf[:-1]).view(B, T) # inputs
|
229 |
-
y = (buf[1:]).view(B, T) # targets
|
230 |
-
# advance the position in the tensor
|
231 |
-
self.current_position += B*T
|
232 |
-
# if loading the next batch would be out of bounds, reset
|
233 |
-
if self.current_position + (B * T + 1) > len(self.tokens):
|
234 |
-
self.current_position = 0
|
235 |
-
return x, y
|
236 |
-
|
237 |
-
|
238 |
-
import os
|
239 |
-
import time
|
240 |
-
import torch
|
241 |
-
|
242 |
-
# Initialize the model and data loader
|
243 |
-
config = GPTConfig()
|
244 |
-
model = GPT(config).to(device) # Move model to the correct device
|
245 |
-
|
246 |
-
# Print the model architecture and number of parameters
|
247 |
-
print(model)
|
248 |
-
model.print_num_parameters()
|
249 |
-
|
250 |
-
train_loader = DataLoaderLite(B=4, T=1024)
|
251 |
-
|
252 |
-
# Define the optimizer
|
253 |
-
optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4)
|
254 |
-
|
255 |
-
# Function to load the most recent checkpoint
|
256 |
-
def load_latest_checkpoint(model):
|
257 |
-
checkpoint_file = 'checkpoint.pt'
|
258 |
-
if not os.path.exists(checkpoint_file):
|
259 |
-
return 0 # No checkpoint found, start from epoch 0
|
260 |
-
|
261 |
-
print(f'Loading checkpoint from {checkpoint_file}')
|
262 |
-
checkpoint = torch.load(checkpoint_file, map_location=device) # Load checkpoint to the correct device
|
263 |
-
model.load_state_dict(checkpoint['model_state_dict'])
|
264 |
-
return checkpoint['epoch']
|
265 |
-
|
266 |
-
# Load the latest checkpoint if available
|
267 |
-
start_epoch = load_latest_checkpoint(model)
|
268 |
-
|
269 |
-
# Training loop
|
270 |
-
num_epochs = 100
|
271 |
-
|
272 |
-
# Start time tracking
|
273 |
-
start_time = time.time()
|
274 |
-
|
275 |
-
for epoch in range(start_epoch, num_epochs): # Start from the loaded epoch
|
276 |
-
epoch_loss = 0.0 # Initialize epoch loss
|
277 |
-
num_steps = 0 # Initialize step counter for the epoch
|
278 |
-
last_loss = None # Variable to store the last loss
|
279 |
-
|
280 |
-
# Calculate total steps for the progress bar
|
281 |
-
total_steps = len(train_loader.tokens) // (train_loader.B * train_loader.T)
|
282 |
-
|
283 |
-
# Use tqdm to create a progress bar
|
284 |
-
with tqdm(total=total_steps, desc=f'Epoch {epoch + 1}/{num_epochs}') as pbar:
|
285 |
-
for step in range(total_steps): # Iterate over the number of steps
|
286 |
-
x, y = train_loader.next_batch()
|
287 |
-
x, y = x.to(device), y.to(device)
|
288 |
-
optimizer.zero_grad()
|
289 |
-
logits, loss = model(x, y)
|
290 |
-
loss.backward()
|
291 |
-
optimizer.step()
|
292 |
-
|
293 |
-
epoch_loss += loss.item() # Accumulate loss
|
294 |
-
num_steps += 1 # Increment step counter
|
295 |
-
last_loss = loss.item() # Store the last loss
|
296 |
-
pbar.update(1) # Update progress bar
|
297 |
-
|
298 |
-
# Check if the loss is below the threshold
|
299 |
-
if last_loss < 0.099999:
|
300 |
-
print(f'Loss below threshold: {last_loss:.6f}') # Print loss before breaking
|
301 |
-
break # Exit the loop if the loss condition is met
|
302 |
-
|
303 |
-
# Print the loss at the end of the epoch
|
304 |
-
print(f'Epoch {epoch + 1}/{num_epochs}, Loss: {last_loss:.6f}')
|
305 |
-
|
306 |
-
# Check if the loss condition was met to break out of the epoch loop
|
307 |
-
if last_loss < 0.099999:
|
308 |
-
print(f'Early stopping at epoch {epoch + 1} due to loss condition met.')
|
309 |
-
break # Exit the epoch loop if the loss condition is met
|
310 |
-
|
311 |
-
# Checkpointing: Save the model and the current epoch after each epoch
|
312 |
-
checkpoint_path = 'checkpoint.pt' # Save to a single checkpoint file
|
313 |
-
torch.save({
|
314 |
-
'epoch': epoch + 1, # Save the current epoch number
|
315 |
-
'model_state_dict': model.state_dict(), # Save the model state
|
316 |
-
}, checkpoint_path)
|
317 |
-
|
318 |
-
# End time tracking
|
319 |
-
end_time = time.time()
|
320 |
-
training_duration = end_time - start_time
|
321 |
-
|
322 |
-
# Convert training duration to minutes and seconds
|
323 |
-
minutes = int(training_duration // 60)
|
324 |
-
seconds = int(training_duration % 60)
|
325 |
-
|
326 |
-
# Print the total training time in minute:second format
|
327 |
-
print(f'Total training time: {minutes} minutes and {seconds} seconds')
|
328 |
-
|
329 |
-
# After training your model, apply quantization and save it with compression
|
330 |
-
def save_model_with_quantization(model, file_path):
|
331 |
-
# Switch model to evaluation mode
|
332 |
-
model.eval()
|
333 |
-
|
334 |
-
# Apply dynamic quantization
|
335 |
-
quantized_model = torch.quantization.quantize_dynamic(
|
336 |
-
model, # the model to be quantized
|
337 |
-
{nn.Linear}, # layers to quantize
|
338 |
-
dtype=torch.qint8 # quantization type
|
339 |
-
)
|
340 |
-
|
341 |
-
# Save the quantized model with compression
|
342 |
-
torch.save(quantized_model.state_dict(), file_path, _use_new_zipfile_serialization=True)
|
343 |
-
print(f'Model saved to {file_path} with quantization and compression.')
|
344 |
-
|
345 |
-
# Call this function after training your model
|
346 |
-
save_model_with_quantization(model, 'trained_model_quantized.pt')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|