kalekarnn's picture
Update app.py
03df9fc verified
import streamlit as st
import torch
import torch.nn as nn
from torch.nn import functional as F
import tiktoken
import sys
import os
import logging
import warnings
from dataclasses import dataclass
import math
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANGPT_SCALE_INIT = 1
# regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
return y
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024 # max sequence length
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
n_layer: int = 12 # number of layers
n_head: int = 12 # number of heads
n_embd: int = 768 # embedding dimension
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# weight sharing
self.transformer.wte.weight = self.lm_head.weight
# weight initialization
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
def print_num_parameters(self):
num_params = sum(p.numel() for p in self.parameters())
print(f"Number of model parameters: {num_params}")
def forward(self, idx, targets=None):
# idx is of shape (B, T)
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
# forward the token and posisition embeddings
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
x = tok_emb + pos_emb
# forward the blocks of the transformer
for block in self.transformer.h:
x = block(x)
# forward the final layernorm and the classifier
x = self.transformer.ln_f(x)
logits = self.lm_head(x) # (B, T, vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
@classmethod
def from_pretrained(cls, model_type):
"""Loads pretrained GPT-2 model weights from huggingface"""
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
from transformers import GPT2LMHeadModel
print("loading weights from pretrained gpt: %s" % model_type)
# n_layer, n_head and n_embd are determined from model_type
config_args = {
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
}[model_type]
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
# create a from-scratch initialized minGPT model
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict()
sd_keys = sd.keys()
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
# init a huggingface/transformers model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# copy while ensuring all of the parameters are aligned and match in names and shapes
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
# this means that we have to transpose these weights when we import them
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for k in sd_keys_hf:
if any(k.endswith(w) for w in transposed):
# special treatment for the Conv1D weights we need to transpose
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
# vanilla copy over the other parameters
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
return model
# Configure logging and warnings
logging.getLogger('streamlit').setLevel(logging.ERROR)
warnings.filterwarnings('ignore', message='.*torch.classes.*')
warnings.filterwarnings('ignore', category=FutureWarning)
# Add the project root to Python path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
@st.cache_resource
def load_model():
device = "cpu"
config = GPTConfig()
model = GPT(config)
# Load the trained weights from root directory
checkpoint = torch.load('trained_model_quantized.pt', map_location=device, weights_only=True)
# Handle pruned weights
state_dict = checkpoint['model_state_dict']
new_state_dict = {}
for key in model.state_dict().keys():
if key.endswith('.weight'):
# Check if this is a pruned weight
orig_key = key[:-7] + '.weight_orig' if key.endswith('.weight') else key
mask_key = key[:-7] + '.weight_mask' if key.endswith('.weight') else key
if orig_key in state_dict and mask_key in state_dict:
# Reconstruct the pruned weight
new_state_dict[key] = state_dict[orig_key] * state_dict[mask_key]
else:
# Use the weight as is
new_state_dict[key] = state_dict[key] if key in state_dict else model.state_dict()[key]
else:
# Copy non-weight parameters as is
new_state_dict[key] = state_dict[key] if key in state_dict else model.state_dict()[key]
# Load the processed state dict
model.load_state_dict(new_state_dict)
# Convert back to float32 for inference
model = model.float()
model.to(device)
model.eval()
return model, device
def generate_text(model, prompt, max_length=100, num_return_sequences=1, device='cpu'):
tokenizer = tiktoken.get_encoding('gpt2')
input_tokens = tokenizer.encode(prompt)
x = torch.tensor(input_tokens).unsqueeze(0).repeat(num_return_sequences, 1)
x = x.to(device)
# Calculate final length (input length + requested additional tokens)
input_length = x.size(1)
target_length = input_length + max_length
# Generate text
with torch.no_grad():
while x.size(1) < target_length:
logits = model(x)[0]
next_token_logits = logits[:, -1, :]
probs = torch.softmax(next_token_logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
x = torch.cat((x, next_token), dim=1)
# Print token information once before generating sequences
st.text(f"Size of Input tokens: {input_length}, Additional tokens to be predicted: {max_length}, Total tokens to be generated: {x.size(1)}")
# Decode generated sequences
generated_texts = []
for i in range(num_return_sequences):
tokens = x[i].tolist()
text = tokenizer.decode(tokens)
generated_texts.append(text)
return generated_texts
# Streamlit UI
st.title("GPT Text Generator")
# Load model
model, device = load_model()
# Input form
prompt = st.text_area("Enter your prompt:", "Once upon a time")
max_length = st.slider("Predict additional text of length:", min_value=1, max_value=50, value=5)
num_sequences = st.slider("Number of sequences to generate:", 1, 5, 1)
if st.button("Generate"):
with st.spinner("Generating text..."):
generated_texts = generate_text(
model=model,
prompt=prompt,
max_length=max_length,
num_return_sequences=num_sequences,
device=device
)
# Display results
for i, text in enumerate(generated_texts, 1):
st.write(f"\nSequence {i}:")
st.write(text)