ju4nppp's picture
updated app
b6afda1 verified
import torch
import torch.nn as nn
import torchvision.utils as vutils
import gradio as gr
import numpy as np
# Define Generator architecture - must match the architecture used during training
class Generator(nn.Module):
def __init__(self, ngpu=1, nz=100, ngf=64, nc=1):
super(Generator, self).__init__()
self.ngpu = ngpu
self.main = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
# state size. (ngf*8) x 4 x 4
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
# state size. (ngf*4) x 8 x 8
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
# state size. (ngf*2) x 16 x 16
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
# state size. (ngf) x 32 x 32
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (nc) x 64 x 64
)
def forward(self, input):
return self.main(input)
# Load the generator
def load_model(model_path):
# Create the generator and load the saved weights
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
netG = Generator().to(device)
netG.load_state_dict(torch.load(model_path, map_location=device))
netG.eval() # Set to evaluation mode
return netG, device
# Generate images using the model
def generate_images(num_images=16, seed=None, model_path="models/netG_epoch_29.pth"):
# Load the model
netG, device = load_model(model_path)
# Set random seed for reproducibility if provided
if seed is not None:
torch.manual_seed(seed)
np.random.seed(seed)
# Generate latent vectors
nz = 100 # Size of the latent vector (must match the model)
noise = torch.randn(num_images, nz, 1, 1, device=device)
# Generate fake images
with torch.no_grad():
fake_images = netG(noise).detach().cpu()
# Convert to grid for display
grid = vutils.make_grid(fake_images, padding=2, normalize=True, nrow=int(np.sqrt(num_images)))
# Convert from tensor to numpy array for Gradio
grid_np = grid.numpy().transpose((1, 2, 0))
# Convert from [-1, 1] to [0, 1] range for display
grid_np = (grid_np + 1) / 2.0
return grid_np
# Create Gradio interface
def create_gradio_app():
with gr.Blocks(title="DCGAN MNIST Generator") as app:
gr.Markdown("# DCGAN MNIST Generator")
gr.Markdown("Generate MNIST-like digits using a Deep Convolutional GAN")
with gr.Row():
with gr.Column():
num_images = gr.Slider(minimum=1, maximum=64, value=16, step=1, label="Number of Images")
seed = gr.Number(label="Random Seed (leave blank for random)", precision=0)
generate_button = gr.Button("Generate Images")
with gr.Column():
output_image = gr.Image(label="Generated Images")
generate_button.click(fn=generate_images, inputs=[num_images, seed], outputs=output_image)
gr.Markdown("## About")
gr.Markdown("This model was trained using PyTorch DCGAN implementation on the MNIST dataset. "
"It generates new handwritten digit-like images from random noise.")
return app
# Launch the app if the script is run directly
if __name__ == "__main__":
app = create_gradio_app()
app.launch()