Spaces:
Running
Running
updated app
Browse filesaddited the model path
app.py
CHANGED
@@ -1,107 +1,107 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torchvision.utils as vutils
|
4 |
-
import gradio as gr
|
5 |
-
import numpy as np
|
6 |
-
|
7 |
-
|
8 |
-
# Define Generator architecture - must match the architecture used during training
|
9 |
-
class Generator(nn.Module):
|
10 |
-
def __init__(self, ngpu=1, nz=100, ngf=64, nc=1):
|
11 |
-
super(Generator, self).__init__()
|
12 |
-
self.ngpu = ngpu
|
13 |
-
self.main = nn.Sequential(
|
14 |
-
# input is Z, going into a convolution
|
15 |
-
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
|
16 |
-
nn.BatchNorm2d(ngf * 8),
|
17 |
-
nn.ReLU(True),
|
18 |
-
# state size. (ngf*8) x 4 x 4
|
19 |
-
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
|
20 |
-
nn.BatchNorm2d(ngf * 4),
|
21 |
-
nn.ReLU(True),
|
22 |
-
# state size. (ngf*4) x 8 x 8
|
23 |
-
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
|
24 |
-
nn.BatchNorm2d(ngf * 2),
|
25 |
-
nn.ReLU(True),
|
26 |
-
# state size. (ngf*2) x 16 x 16
|
27 |
-
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
|
28 |
-
nn.BatchNorm2d(ngf),
|
29 |
-
nn.ReLU(True),
|
30 |
-
# state size. (ngf) x 32 x 32
|
31 |
-
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
|
32 |
-
nn.Tanh()
|
33 |
-
# state size. (nc) x 64 x 64
|
34 |
-
)
|
35 |
-
|
36 |
-
def forward(self, input):
|
37 |
-
return self.main(input)
|
38 |
-
|
39 |
-
|
40 |
-
# Load the generator
|
41 |
-
def load_model(model_path):
|
42 |
-
# Create the generator and load the saved weights
|
43 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
44 |
-
netG = Generator().to(device)
|
45 |
-
netG.load_state_dict(torch.load(model_path, map_location=device))
|
46 |
-
netG.eval() # Set to evaluation mode
|
47 |
-
return netG, device
|
48 |
-
|
49 |
-
|
50 |
-
# Generate images using the model
|
51 |
-
def generate_images(num_images=16, seed=None, model_path="models/
|
52 |
-
# Load the model
|
53 |
-
netG, device = load_model(model_path)
|
54 |
-
|
55 |
-
# Set random seed for reproducibility if provided
|
56 |
-
if seed is not None:
|
57 |
-
torch.manual_seed(seed)
|
58 |
-
np.random.seed(seed)
|
59 |
-
|
60 |
-
# Generate latent vectors
|
61 |
-
nz = 100 # Size of the latent vector (must match the model)
|
62 |
-
noise = torch.randn(num_images, nz, 1, 1, device=device)
|
63 |
-
|
64 |
-
# Generate fake images
|
65 |
-
with torch.no_grad():
|
66 |
-
fake_images = netG(noise).detach().cpu()
|
67 |
-
|
68 |
-
# Convert to grid for display
|
69 |
-
grid = vutils.make_grid(fake_images, padding=2, normalize=True, nrow=int(np.sqrt(num_images)))
|
70 |
-
|
71 |
-
# Convert from tensor to numpy array for Gradio
|
72 |
-
grid_np = grid.numpy().transpose((1, 2, 0))
|
73 |
-
|
74 |
-
# Convert from [-1, 1] to [0, 1] range for display
|
75 |
-
grid_np = (grid_np + 1) / 2.0
|
76 |
-
|
77 |
-
return grid_np
|
78 |
-
|
79 |
-
|
80 |
-
# Create Gradio interface
|
81 |
-
def create_gradio_app():
|
82 |
-
with gr.Blocks(title="DCGAN MNIST Generator") as app:
|
83 |
-
gr.Markdown("# DCGAN MNIST Generator")
|
84 |
-
gr.Markdown("Generate MNIST-like digits using a Deep Convolutional GAN")
|
85 |
-
|
86 |
-
with gr.Row():
|
87 |
-
with gr.Column():
|
88 |
-
num_images = gr.Slider(minimum=1, maximum=64, value=16, step=1, label="Number of Images")
|
89 |
-
seed = gr.Number(label="Random Seed (leave blank for random)", precision=0)
|
90 |
-
generate_button = gr.Button("Generate Images")
|
91 |
-
|
92 |
-
with gr.Column():
|
93 |
-
output_image = gr.Image(label="Generated Images")
|
94 |
-
|
95 |
-
generate_button.click(fn=generate_images, inputs=[num_images, seed], outputs=output_image)
|
96 |
-
|
97 |
-
gr.Markdown("## About")
|
98 |
-
gr.Markdown("This model was trained using PyTorch DCGAN implementation on the MNIST dataset. "
|
99 |
-
"It generates new handwritten digit-like images from random noise.")
|
100 |
-
|
101 |
-
return app
|
102 |
-
|
103 |
-
|
104 |
-
# Launch the app if the script is run directly
|
105 |
-
if __name__ == "__main__":
|
106 |
-
app = create_gradio_app()
|
107 |
app.launch()
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision.utils as vutils
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
# Define Generator architecture - must match the architecture used during training
|
9 |
+
class Generator(nn.Module):
|
10 |
+
def __init__(self, ngpu=1, nz=100, ngf=64, nc=1):
|
11 |
+
super(Generator, self).__init__()
|
12 |
+
self.ngpu = ngpu
|
13 |
+
self.main = nn.Sequential(
|
14 |
+
# input is Z, going into a convolution
|
15 |
+
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
|
16 |
+
nn.BatchNorm2d(ngf * 8),
|
17 |
+
nn.ReLU(True),
|
18 |
+
# state size. (ngf*8) x 4 x 4
|
19 |
+
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
|
20 |
+
nn.BatchNorm2d(ngf * 4),
|
21 |
+
nn.ReLU(True),
|
22 |
+
# state size. (ngf*4) x 8 x 8
|
23 |
+
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
|
24 |
+
nn.BatchNorm2d(ngf * 2),
|
25 |
+
nn.ReLU(True),
|
26 |
+
# state size. (ngf*2) x 16 x 16
|
27 |
+
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
|
28 |
+
nn.BatchNorm2d(ngf),
|
29 |
+
nn.ReLU(True),
|
30 |
+
# state size. (ngf) x 32 x 32
|
31 |
+
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
|
32 |
+
nn.Tanh()
|
33 |
+
# state size. (nc) x 64 x 64
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(self, input):
|
37 |
+
return self.main(input)
|
38 |
+
|
39 |
+
|
40 |
+
# Load the generator
|
41 |
+
def load_model(model_path):
|
42 |
+
# Create the generator and load the saved weights
|
43 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
44 |
+
netG = Generator().to(device)
|
45 |
+
netG.load_state_dict(torch.load(model_path, map_location=device))
|
46 |
+
netG.eval() # Set to evaluation mode
|
47 |
+
return netG, device
|
48 |
+
|
49 |
+
|
50 |
+
# Generate images using the model
|
51 |
+
def generate_images(num_images=16, seed=None, model_path="models/netG_epoch_29.pth"):
|
52 |
+
# Load the model
|
53 |
+
netG, device = load_model(model_path)
|
54 |
+
|
55 |
+
# Set random seed for reproducibility if provided
|
56 |
+
if seed is not None:
|
57 |
+
torch.manual_seed(seed)
|
58 |
+
np.random.seed(seed)
|
59 |
+
|
60 |
+
# Generate latent vectors
|
61 |
+
nz = 100 # Size of the latent vector (must match the model)
|
62 |
+
noise = torch.randn(num_images, nz, 1, 1, device=device)
|
63 |
+
|
64 |
+
# Generate fake images
|
65 |
+
with torch.no_grad():
|
66 |
+
fake_images = netG(noise).detach().cpu()
|
67 |
+
|
68 |
+
# Convert to grid for display
|
69 |
+
grid = vutils.make_grid(fake_images, padding=2, normalize=True, nrow=int(np.sqrt(num_images)))
|
70 |
+
|
71 |
+
# Convert from tensor to numpy array for Gradio
|
72 |
+
grid_np = grid.numpy().transpose((1, 2, 0))
|
73 |
+
|
74 |
+
# Convert from [-1, 1] to [0, 1] range for display
|
75 |
+
grid_np = (grid_np + 1) / 2.0
|
76 |
+
|
77 |
+
return grid_np
|
78 |
+
|
79 |
+
|
80 |
+
# Create Gradio interface
|
81 |
+
def create_gradio_app():
|
82 |
+
with gr.Blocks(title="DCGAN MNIST Generator") as app:
|
83 |
+
gr.Markdown("# DCGAN MNIST Generator")
|
84 |
+
gr.Markdown("Generate MNIST-like digits using a Deep Convolutional GAN")
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
with gr.Column():
|
88 |
+
num_images = gr.Slider(minimum=1, maximum=64, value=16, step=1, label="Number of Images")
|
89 |
+
seed = gr.Number(label="Random Seed (leave blank for random)", precision=0)
|
90 |
+
generate_button = gr.Button("Generate Images")
|
91 |
+
|
92 |
+
with gr.Column():
|
93 |
+
output_image = gr.Image(label="Generated Images")
|
94 |
+
|
95 |
+
generate_button.click(fn=generate_images, inputs=[num_images, seed], outputs=output_image)
|
96 |
+
|
97 |
+
gr.Markdown("## About")
|
98 |
+
gr.Markdown("This model was trained using PyTorch DCGAN implementation on the MNIST dataset. "
|
99 |
+
"It generates new handwritten digit-like images from random noise.")
|
100 |
+
|
101 |
+
return app
|
102 |
+
|
103 |
+
|
104 |
+
# Launch the app if the script is run directly
|
105 |
+
if __name__ == "__main__":
|
106 |
+
app = create_gradio_app()
|
107 |
app.launch()
|