Spaces:
Runtime error
Runtime error
import os | |
from PIL import Image | |
import torch | |
from torchvision import transforms | |
import gradio as gr | |
# load model | |
model = torch.hub.load('datvuthanh/hybridnets', 'hybridnets', pretrained=True) | |
normalize = transforms.Normalize( | |
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
) | |
transform=transforms.Compose([ | |
transforms.ToTensor(), | |
# normalize | |
]) | |
def inference(img): | |
# print(img.size) | |
img = img.resize((640, 384)) | |
img = torch.unsqueeze(transform(img), dim=0) | |
# img = transform(img) | |
features, regression, classification, anchors, segmentation = model(img) | |
features_out = features[0][0, :, :].detach().numpy() | |
regression_out = regression[0][0, :, :].detach().numpy() | |
classification_out = classification[0][0, :, :].detach().numpy() | |
anchors_out = anchors[0][0, :, :].detach().numpy() | |
segmentation_out = segmentation[0][0, :, :].detach().numpy() | |
return features_out, regression_out, classification_out, anchors_out, segmentation_out | |
title="HybridNets Demo" | |
description="Gradio demo for HybridNets: End2End Perception Network pretrained on BDD100k Dataset. To use it, simply upload your image or click on one of the examples to load them. Read more at the links below" | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2203.09035' target='_blank'>ybridNets: End2End Perception Network</a> | <a href='https://github.com/datvuthanh/HybridNets' target='_blank'>Github Repo</a></p>" | |
examples=[['frame_00_delay-0.13s.jpg']] | |
gr.Interface(inference,gr.inputs.Image(type="pil"),[gr.outputs.Image(label='Features'),gr.outputs.Image(label='Regression'),gr.outputs.Image(label='Classification'),gr.outputs.Image(label='Anchors'),gr.outputs.Image(label='sSgmentation ')],article=article,description=description,title=title,examples=examples).launch() | |