Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
|
8 |
+
# load model
|
9 |
+
model = torch.hub.load('datvuthanh/hybridnets', 'hybridnets', pretrained=True)
|
10 |
+
|
11 |
+
|
12 |
+
normalize = transforms.Normalize(
|
13 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
14 |
+
)
|
15 |
+
|
16 |
+
transform=transforms.Compose([
|
17 |
+
transforms.ToTensor(),
|
18 |
+
# normalize
|
19 |
+
])
|
20 |
+
|
21 |
+
|
22 |
+
def inference(img):
|
23 |
+
|
24 |
+
# print(img.size)
|
25 |
+
img = img.resize((640, 384))
|
26 |
+
|
27 |
+
img = torch.unsqueeze(transform(img), dim=0)
|
28 |
+
|
29 |
+
# img = transform(img)
|
30 |
+
|
31 |
+
features, regression, classification, anchors, segmentation = model(img)
|
32 |
+
|
33 |
+
features_out = features[0][0, :, :].detach().numpy()
|
34 |
+
regression_out = regression[0][0, :, :].detach().numpy()
|
35 |
+
classification_out = classification[0][0, :, :].detach().numpy()
|
36 |
+
anchors_out = anchors[0][0, :, :].detach().numpy()
|
37 |
+
segmentation_out = segmentation[0][0, :, :].detach().numpy()
|
38 |
+
|
39 |
+
return features_out, regression_out, classification_out, anchors_out, segmentation_out
|
40 |
+
|
41 |
+
title="HybridNets Demo"
|
42 |
+
description="Gradio demo for HybridNets: End2End Perception Network pretrained on BDD100k Dataset. To use it, simply upload your image or click on one of the examples to load them. Read more at the links below"
|
43 |
+
|
44 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2203.09035' target='_blank'>ybridNets: End2End Perception Network</a> | <a href='https://github.com/datvuthanh/HybridNets' target='_blank'>Github Repo</a></p>"
|
45 |
+
|
46 |
+
examples=[['frame_00_delay-0.13s.jpg']]
|
47 |
+
|
48 |
+
gr.Interface(inference,gr.inputs.Image(type="pil"),[gr.outputs.Image(label='Features'),gr.outputs.Image(label='Regression'),gr.outputs.Image(label='Classification'),gr.outputs.Image(label='Anchors'),gr.outputs.Image(label='sSgmentation ')],article=article,description=description,title=title,examples=examples).launch()
|