Spaces:
Paused
Paused
#!/usr/bin/env python | |
import os | |
import shutil | |
import tempfile | |
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
from settings import ( | |
DEFAULT_IMAGE_RESOLUTION, | |
DEFAULT_NUM_IMAGES, | |
MAX_IMAGE_RESOLUTION, | |
MAX_NUM_IMAGES, | |
MAX_SEED, | |
) | |
from utils import randomize_seed_fn | |
# ---- helper to build a quick textured copy of the mesh --------------- | |
def apply_texture(src_mesh:str, texture:str, tag:str)->str: | |
""" | |
Writes a copy of `src_mesh` and tiny .mtl that points to `texture`. | |
Returns the new OBJ/GLB path for viewing. | |
""" | |
tmp_dir = tempfile.mkdtemp() | |
mesh_copy = os.path.join(tmp_dir, f"{tag}.obj") | |
mtl_name = f"{tag}.mtl" | |
# copy geometry | |
shutil.copy(src_mesh, mesh_copy) | |
# write minimal MTL | |
with open(os.path.join(tmp_dir, mtl_name), "w") as f: | |
f.write(f"newmtl material_0\nmap_Kd {os.path.basename(texture)}\n") | |
# ensure texture lives next to OBJ | |
shutil.copy(texture, os.path.join(tmp_dir, os.path.basename(texture))) | |
# patch OBJ to reference our new MTL | |
with open(mesh_copy, "r+") as f: | |
lines = f.readlines() | |
if not lines[0].startswith("mtllib"): | |
lines.insert(0, f"mtllib {mtl_name}\n") | |
f.seek(0); f.writelines(lines) | |
return mesh_copy | |
def image_to_temp_path(img_like, tag): | |
""" | |
Convert various image-like objects (str, PIL.Image, list, tuple) to temp PNG path. | |
Returns the path to the saved image file. | |
""" | |
# Handle tuple or list input | |
if isinstance(img_like, (list, tuple)): | |
if len(img_like) == 0: | |
raise ValueError("Empty image list/tuple.") | |
img_like = img_like[0] | |
# If it's already a file path | |
if isinstance(img_like, str): | |
return img_like | |
# If it's a PIL Image | |
if isinstance(img_like, Image.Image): | |
temp_path = os.path.join(tempfile.mkdtemp(), f"{tag}.png") | |
img_like.save(temp_path) | |
return temp_path | |
# if it's numpy array | |
if isinstance(img_like, np.ndarray): | |
temp_path = os.path.join(tempfile.mkdtemp(), f"{tag}.png") | |
img_like = Image.fromarray(img_like) | |
img_like.save(temp_path) | |
return temp_path | |
raise ValueError(f"Expected PIL.Image, str, list, or tuple — got {type(img_like)}") | |
def show_mesh(which, mesh, inp, coarse, fine): | |
"""Switch the displayed texture based on dropdown change.""" | |
print() | |
tex_map = { | |
"Input": image_to_temp_path(inp, "input"), | |
"Coarse": coarse[0] if isinstance(coarse, tuple) else coarse, | |
"Fine": fine[0] if isinstance(fine, tuple) else fine, | |
} | |
texture_path = tex_map[which] | |
return apply_texture(mesh, texture_path, which.lower()) | |
# ---------------------------------------------------------------------- | |
def create_demo(process): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image() | |
prompt = gr.Textbox(label="Prompt", submit_btn=True) | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider( | |
label="Number of images", minimum=1, maximum=MAX_NUM_IMAGES, value=DEFAULT_NUM_IMAGES, step=1 | |
) | |
image_resolution = gr.Slider( | |
label="Image resolution", | |
minimum=256, | |
maximum=MAX_IMAGE_RESOLUTION, | |
value=DEFAULT_IMAGE_RESOLUTION, | |
step=256, | |
) | |
num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=10, step=1) | |
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
a_prompt = gr.Textbox(label="Additional prompt", value="best quality, extremely detailed") | |
n_prompt = gr.Textbox( | |
label="Negative prompt", | |
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", | |
) | |
with gr.Column(): | |
result_coarse = gr.Gallery(label="Output Coarse", show_label=True, columns=2, object_fit="scale-down") | |
result_fine = gr.Gallery(label="Output Fine", show_label=True, columns=2, object_fit="scale-down") | |
# mesh_viewer = gr.Model3D(label="Textured Mesh", clear_color=[0, 0, 0, 0], value="examples/monkey/mesh.obj") | |
# radio buttons let the user toggle which texture to view | |
# texture_choice = gr.Radio(["Input", "Coarse", "Fine"], label="Preview texture", value="Input") | |
# mesh_path_state = gr.State("examples/bunny/mesh.obj") | |
inputs = [ | |
image, | |
prompt, | |
a_prompt, | |
n_prompt, | |
num_samples, | |
image_resolution, | |
num_steps, | |
guidance_scale, | |
seed, | |
] | |
# first call → run diffusion / texture network | |
prompt.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=process, | |
inputs=inputs, | |
outputs=[result_coarse, result_fine], | |
api_name="canny", | |
concurrency_id="main", | |
) | |
# .then( | |
# fn=show_mesh, | |
# inputs=[texture_choice, mesh_path_state, image, result_coarse, result_fine], | |
# outputs=mesh_viewer, | |
# queue=False, | |
# api_name=False, | |
# ) | |
gr.Examples( | |
fn=process, | |
inputs=inputs, | |
outputs=[result_coarse, result_fine], | |
examples=[ | |
[ | |
"examples/bunny/uv_normal.png", # /dgxusers/Users/jyang/project/ObjectReal/data/control/preprocess/bunny/uv_normal/fused.png | |
"feather", | |
a_prompt.value, | |
n_prompt.value, | |
num_samples.value, | |
image_resolution.value, | |
num_steps.value, | |
guidance_scale.value, | |
seed.value, | |
], | |
[ | |
"examples/monkey/uv_normal.png", # /dgxusers/Users/jyang/project/ObjectReal/data/control/preprocess/monkey/uv_normal/fused.png | |
"wood", | |
a_prompt.value, | |
n_prompt.value, | |
num_samples.value, | |
image_resolution.value, | |
num_steps.value, | |
guidance_scale.value, | |
seed.value, | |
], | |
], | |
) | |
return demo | |
if __name__ == "__main__": | |
from model import Model | |
model = Model(task_name="Texnet") | |
demo = create_demo(model.process_texnet) | |
demo.queue().launch() |