Spaces:
Paused
Paused
File size: 7,197 Bytes
ce4c1d3 e283fdf ce4c1d3 e283fdf ce4c1d3 e283fdf ce4c1d3 82f2717 ce4c1d3 e283fdf ce4c1d3 e283fdf ce4c1d3 e283fdf ce4c1d3 e283fdf 9d36776 e283fdf 9d36776 82f2717 e283fdf 82f2717 e283fdf 9d36776 ce4c1d3 9d36776 ce4c1d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
#!/usr/bin/env python
import os
import shutil
import tempfile
import gradio as gr
from PIL import Image
import numpy as np
from settings import (
DEFAULT_IMAGE_RESOLUTION,
DEFAULT_NUM_IMAGES,
MAX_IMAGE_RESOLUTION,
MAX_NUM_IMAGES,
MAX_SEED,
)
from utils import randomize_seed_fn
# ---- helper to build a quick textured copy of the mesh ---------------
def apply_texture(src_mesh:str, texture:str, tag:str)->str:
"""
Writes a copy of `src_mesh` and tiny .mtl that points to `texture`.
Returns the new OBJ/GLB path for viewing.
"""
tmp_dir = tempfile.mkdtemp()
mesh_copy = os.path.join(tmp_dir, f"{tag}.obj")
mtl_name = f"{tag}.mtl"
# copy geometry
shutil.copy(src_mesh, mesh_copy)
# write minimal MTL
with open(os.path.join(tmp_dir, mtl_name), "w") as f:
f.write(f"newmtl material_0\nmap_Kd {os.path.basename(texture)}\n")
# ensure texture lives next to OBJ
shutil.copy(texture, os.path.join(tmp_dir, os.path.basename(texture)))
# patch OBJ to reference our new MTL
with open(mesh_copy, "r+") as f:
lines = f.readlines()
if not lines[0].startswith("mtllib"):
lines.insert(0, f"mtllib {mtl_name}\n")
f.seek(0); f.writelines(lines)
return mesh_copy
def image_to_temp_path(img_like, tag):
"""
Convert various image-like objects (str, PIL.Image, list, tuple) to temp PNG path.
Returns the path to the saved image file.
"""
# Handle tuple or list input
if isinstance(img_like, (list, tuple)):
if len(img_like) == 0:
raise ValueError("Empty image list/tuple.")
img_like = img_like[0]
# If it's already a file path
if isinstance(img_like, str):
return img_like
# If it's a PIL Image
if isinstance(img_like, Image.Image):
temp_path = os.path.join(tempfile.mkdtemp(), f"{tag}.png")
img_like.save(temp_path)
return temp_path
# if it's numpy array
if isinstance(img_like, np.ndarray):
temp_path = os.path.join(tempfile.mkdtemp(), f"{tag}.png")
img_like = Image.fromarray(img_like)
img_like.save(temp_path)
return temp_path
raise ValueError(f"Expected PIL.Image, str, list, or tuple — got {type(img_like)}")
def show_mesh(which, mesh, inp, coarse, fine):
"""Switch the displayed texture based on dropdown change."""
print()
tex_map = {
"Input": image_to_temp_path(inp, "input"),
"Coarse": coarse[0] if isinstance(coarse, tuple) else coarse,
"Fine": fine[0] if isinstance(fine, tuple) else fine,
}
texture_path = tex_map[which]
return apply_texture(mesh, texture_path, which.lower())
# ----------------------------------------------------------------------
def create_demo(process):
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
image = gr.Image()
prompt = gr.Textbox(label="Prompt", submit_btn=True)
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(
label="Number of images", minimum=1, maximum=MAX_NUM_IMAGES, value=DEFAULT_NUM_IMAGES, step=1
)
image_resolution = gr.Slider(
label="Image resolution",
minimum=256,
maximum=MAX_IMAGE_RESOLUTION,
value=DEFAULT_IMAGE_RESOLUTION,
step=256,
)
num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=10, step=1)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
a_prompt = gr.Textbox(label="Additional prompt", value="best quality, extremely detailed")
n_prompt = gr.Textbox(
label="Negative prompt",
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
)
with gr.Column():
result_coarse = gr.Gallery(label="Output Coarse", show_label=True, columns=2, object_fit="scale-down")
result_fine = gr.Gallery(label="Output Fine", show_label=True, columns=2, object_fit="scale-down")
# mesh_viewer = gr.Model3D(label="Textured Mesh", clear_color=[0, 0, 0, 0], value="examples/monkey/mesh.obj")
# radio buttons let the user toggle which texture to view
# texture_choice = gr.Radio(["Input", "Coarse", "Fine"], label="Preview texture", value="Input")
# mesh_path_state = gr.State("examples/bunny/mesh.obj")
inputs = [
image,
prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
num_steps,
guidance_scale,
seed,
]
# first call → run diffusion / texture network
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=process,
inputs=inputs,
outputs=[result_coarse, result_fine],
api_name="canny",
concurrency_id="main",
)
# .then(
# fn=show_mesh,
# inputs=[texture_choice, mesh_path_state, image, result_coarse, result_fine],
# outputs=mesh_viewer,
# queue=False,
# api_name=False,
# )
gr.Examples(
fn=process,
inputs=inputs,
outputs=[result_coarse, result_fine],
examples=[
[
"examples/bunny/uv_normal.png", # /dgxusers/Users/jyang/project/ObjectReal/data/control/preprocess/bunny/uv_normal/fused.png
"feather",
a_prompt.value,
n_prompt.value,
num_samples.value,
image_resolution.value,
num_steps.value,
guidance_scale.value,
seed.value,
],
[
"examples/monkey/uv_normal.png", # /dgxusers/Users/jyang/project/ObjectReal/data/control/preprocess/monkey/uv_normal/fused.png
"wood",
a_prompt.value,
n_prompt.value,
num_samples.value,
image_resolution.value,
num_steps.value,
guidance_scale.value,
seed.value,
],
],
)
return demo
if __name__ == "__main__":
from model import Model
model = Model(task_name="Texnet")
demo = create_demo(model.process_texnet)
demo.queue().launch() |