Spaces:
Sleeping
Sleeping
Commit
·
ce4c1d3
1
Parent(s):
1b2ea86
init
Browse files- README.md +12 -1
- app.py +55 -139
- app_canny.py +83 -0
- app_matnet.py +83 -0
- app_texnet.py +83 -0
- cv_utils.py +17 -0
- depth_estimator.py +25 -0
- image_segmentor.py +33 -0
- model.py +670 -0
- preprocessor.py +88 -0
- settings.py +19 -0
- utils.py +9 -0
README.md
CHANGED
@@ -10,4 +10,15 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
|
16 |
+
## setup locally
|
17 |
+
conda create -n matgen python=3.11
|
18 |
+
conda activate matgen
|
19 |
+
pip install diffusers["torch"] transformers accelerate xformers
|
20 |
+
pip install gradio
|
21 |
+
pip install controlnet-aux
|
22 |
+
|
23 |
+
## local authen
|
24 |
+
huggingface-cli login
|
app.py
CHANGED
@@ -1,156 +1,72 @@
|
|
1 |
-
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
|
5 |
-
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
|
9 |
-
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
-
|
12 |
-
if torch.cuda.is_available():
|
13 |
-
torch_dtype = torch.float16
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
-
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
-
|
20 |
-
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
-
def infer(
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
|
39 |
-
|
|
|
40 |
|
41 |
-
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
|
51 |
-
|
|
|
52 |
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
#col-container {
|
62 |
-
margin: 0 auto;
|
63 |
-
max-width: 640px;
|
64 |
-
}
|
65 |
-
"""
|
66 |
|
67 |
-
with gr.
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
|
|
|
71 |
with gr.Row():
|
72 |
-
|
73 |
-
label="
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
with gr.Accordion("Advanced Settings", open=False):
|
85 |
-
negative_prompt = gr.Text(
|
86 |
-
label="Negative prompt",
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
-
|
92 |
-
seed = gr.Slider(
|
93 |
-
label="Seed",
|
94 |
-
minimum=0,
|
95 |
-
maximum=MAX_SEED,
|
96 |
-
step=1,
|
97 |
-
value=0,
|
98 |
-
)
|
99 |
-
|
100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
-
|
102 |
-
with gr.Row():
|
103 |
-
width = gr.Slider(
|
104 |
-
label="Width",
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
-
)
|
110 |
-
|
111 |
-
height = gr.Slider(
|
112 |
-
label="Height",
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
-
|
119 |
-
with gr.Row():
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
-
)
|
127 |
-
|
128 |
-
num_inference_steps = gr.Slider(
|
129 |
-
label="Number of inference steps",
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
137 |
gr.on(
|
138 |
-
triggers=[
|
139 |
-
fn=
|
140 |
-
inputs=
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
-
demo.launch()
|
155 |
-
|
156 |
-
print()
|
|
|
1 |
+
#!/usr/bin/env python
|
|
|
|
|
2 |
|
3 |
+
import gradio as gr
|
|
|
4 |
import torch
|
5 |
|
6 |
+
from app_canny import create_demo as create_demo_canny
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
from model import Model
|
9 |
+
from settings import ALLOW_CHANGING_BASE_MODEL, DEFAULT_MODEL_ID, SHOW_DUPLICATE_BUTTON
|
10 |
|
11 |
+
DESCRIPTION = "# Material Authoring Demo v0.1"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
if not torch.cuda.is_available():
|
14 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
15 |
|
16 |
+
model = Model(base_model_id=DEFAULT_MODEL_ID, task_name="Canny")
|
17 |
|
18 |
+
with gr.Blocks() as demo:
|
19 |
+
gr.Markdown(DESCRIPTION)
|
20 |
+
gr.DuplicateButton(
|
21 |
+
value="Duplicate Space for private use",
|
22 |
+
elem_id="duplicate-button",
|
23 |
+
visible=SHOW_DUPLICATE_BUTTON,
|
24 |
+
)
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
with gr.Tabs():
|
27 |
+
with gr.Tab("Canny"):
|
28 |
+
create_demo_canny(model.process_canny)
|
29 |
+
with gr.Tab("Texnet"):
|
30 |
+
create_demo_canny(model.process_canny)
|
31 |
+
with gr.Tab("Matnet"):
|
32 |
+
create_demo_canny(model.process_canny)
|
33 |
|
34 |
+
with gr.Accordion(label="Base model", open=False):
|
35 |
with gr.Row():
|
36 |
+
with gr.Column(scale=5):
|
37 |
+
current_base_model = gr.Text(label="Current base model")
|
38 |
+
with gr.Column(scale=1):
|
39 |
+
check_base_model_button = gr.Button("Check current base model")
|
40 |
+
with gr.Row():
|
41 |
+
with gr.Column(scale=5):
|
42 |
+
new_base_model_id = gr.Text(
|
43 |
+
label="New base model",
|
44 |
+
max_lines=1,
|
45 |
+
placeholder="stable-diffusion-v1-5/stable-diffusion-v1-5",
|
46 |
+
info="The base model must be compatible with Stable Diffusion v1.5.",
|
47 |
+
interactive=ALLOW_CHANGING_BASE_MODEL,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
)
|
49 |
+
with gr.Column(scale=1):
|
50 |
+
change_base_model_button = gr.Button("Change base model", interactive=ALLOW_CHANGING_BASE_MODEL)
|
51 |
+
if not ALLOW_CHANGING_BASE_MODEL:
|
52 |
+
gr.Markdown(
|
53 |
+
"""The base model is not allowed to be changed in this Space so as not to slow down the demo, but it can be changed if you duplicate the Space."""
|
54 |
+
)
|
55 |
|
56 |
+
check_base_model_button.click(
|
57 |
+
fn=lambda: model.base_model_id,
|
58 |
+
outputs=current_base_model,
|
59 |
+
queue=False,
|
60 |
+
api_name="check_base_model",
|
61 |
+
)
|
62 |
gr.on(
|
63 |
+
triggers=[new_base_model_id.submit, change_base_model_button.click],
|
64 |
+
fn=model.set_base_model,
|
65 |
+
inputs=new_base_model_id,
|
66 |
+
outputs=current_base_model,
|
67 |
+
api_name=False,
|
68 |
+
concurrency_id="main",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
)
|
70 |
|
71 |
if __name__ == "__main__":
|
72 |
+
demo.queue(max_size=20).launch()
|
|
|
|
app_canny.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from settings import (
|
6 |
+
DEFAULT_IMAGE_RESOLUTION,
|
7 |
+
DEFAULT_NUM_IMAGES,
|
8 |
+
MAX_IMAGE_RESOLUTION,
|
9 |
+
MAX_NUM_IMAGES,
|
10 |
+
MAX_SEED,
|
11 |
+
)
|
12 |
+
from utils import randomize_seed_fn
|
13 |
+
|
14 |
+
|
15 |
+
def create_demo(process):
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
with gr.Row():
|
18 |
+
with gr.Column():
|
19 |
+
image = gr.Image()
|
20 |
+
prompt = gr.Textbox(label="Prompt", submit_btn=True)
|
21 |
+
with gr.Accordion("Advanced options", open=False):
|
22 |
+
num_samples = gr.Slider(
|
23 |
+
label="Number of images", minimum=1, maximum=MAX_NUM_IMAGES, value=DEFAULT_NUM_IMAGES, step=1
|
24 |
+
)
|
25 |
+
image_resolution = gr.Slider(
|
26 |
+
label="Image resolution",
|
27 |
+
minimum=256,
|
28 |
+
maximum=MAX_IMAGE_RESOLUTION,
|
29 |
+
value=DEFAULT_IMAGE_RESOLUTION,
|
30 |
+
step=256,
|
31 |
+
)
|
32 |
+
canny_low_threshold = gr.Slider(
|
33 |
+
label="Canny low threshold", minimum=1, maximum=255, value=100, step=1
|
34 |
+
)
|
35 |
+
canny_high_threshold = gr.Slider(
|
36 |
+
label="Canny high threshold", minimum=1, maximum=255, value=200, step=1
|
37 |
+
)
|
38 |
+
num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=20, step=1)
|
39 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
40 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
41 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
42 |
+
a_prompt = gr.Textbox(label="Additional prompt", value="best quality, extremely detailed")
|
43 |
+
n_prompt = gr.Textbox(
|
44 |
+
label="Negative prompt",
|
45 |
+
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
46 |
+
)
|
47 |
+
with gr.Column():
|
48 |
+
result = gr.Gallery(label="Output", show_label=False, columns=2, object_fit="scale-down")
|
49 |
+
inputs = [
|
50 |
+
image,
|
51 |
+
prompt,
|
52 |
+
a_prompt,
|
53 |
+
n_prompt,
|
54 |
+
num_samples,
|
55 |
+
image_resolution,
|
56 |
+
num_steps,
|
57 |
+
guidance_scale,
|
58 |
+
seed,
|
59 |
+
canny_low_threshold,
|
60 |
+
canny_high_threshold,
|
61 |
+
]
|
62 |
+
prompt.submit(
|
63 |
+
fn=randomize_seed_fn,
|
64 |
+
inputs=[seed, randomize_seed],
|
65 |
+
outputs=seed,
|
66 |
+
queue=False,
|
67 |
+
api_name=False,
|
68 |
+
).then(
|
69 |
+
fn=process,
|
70 |
+
inputs=inputs,
|
71 |
+
outputs=result,
|
72 |
+
api_name="canny",
|
73 |
+
concurrency_id="main",
|
74 |
+
)
|
75 |
+
return demo
|
76 |
+
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
from model import Model
|
80 |
+
|
81 |
+
model = Model(task_name="Canny")
|
82 |
+
demo = create_demo(model.process_canny)
|
83 |
+
demo.queue().launch()
|
app_matnet.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from settings import (
|
6 |
+
DEFAULT_IMAGE_RESOLUTION,
|
7 |
+
DEFAULT_NUM_IMAGES,
|
8 |
+
MAX_IMAGE_RESOLUTION,
|
9 |
+
MAX_NUM_IMAGES,
|
10 |
+
MAX_SEED,
|
11 |
+
)
|
12 |
+
from utils import randomize_seed_fn
|
13 |
+
|
14 |
+
|
15 |
+
def create_demo(process):
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
with gr.Row():
|
18 |
+
with gr.Column():
|
19 |
+
image = gr.Image()
|
20 |
+
prompt = gr.Textbox(label="Prompt", submit_btn=True)
|
21 |
+
with gr.Accordion("Advanced options", open=False):
|
22 |
+
num_samples = gr.Slider(
|
23 |
+
label="Number of images", minimum=1, maximum=MAX_NUM_IMAGES, value=DEFAULT_NUM_IMAGES, step=1
|
24 |
+
)
|
25 |
+
image_resolution = gr.Slider(
|
26 |
+
label="Image resolution",
|
27 |
+
minimum=256,
|
28 |
+
maximum=MAX_IMAGE_RESOLUTION,
|
29 |
+
value=DEFAULT_IMAGE_RESOLUTION,
|
30 |
+
step=256,
|
31 |
+
)
|
32 |
+
canny_low_threshold = gr.Slider(
|
33 |
+
label="Canny low threshold", minimum=1, maximum=255, value=100, step=1
|
34 |
+
)
|
35 |
+
canny_high_threshold = gr.Slider(
|
36 |
+
label="Canny high threshold", minimum=1, maximum=255, value=200, step=1
|
37 |
+
)
|
38 |
+
num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=20, step=1)
|
39 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
40 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
41 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
42 |
+
a_prompt = gr.Textbox(label="Additional prompt", value="best quality, extremely detailed")
|
43 |
+
n_prompt = gr.Textbox(
|
44 |
+
label="Negative prompt",
|
45 |
+
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
46 |
+
)
|
47 |
+
with gr.Column():
|
48 |
+
result = gr.Gallery(label="Output", show_label=False, columns=2, object_fit="scale-down")
|
49 |
+
inputs = [
|
50 |
+
image,
|
51 |
+
prompt,
|
52 |
+
a_prompt,
|
53 |
+
n_prompt,
|
54 |
+
num_samples,
|
55 |
+
image_resolution,
|
56 |
+
num_steps,
|
57 |
+
guidance_scale,
|
58 |
+
seed,
|
59 |
+
canny_low_threshold,
|
60 |
+
canny_high_threshold,
|
61 |
+
]
|
62 |
+
prompt.submit(
|
63 |
+
fn=randomize_seed_fn,
|
64 |
+
inputs=[seed, randomize_seed],
|
65 |
+
outputs=seed,
|
66 |
+
queue=False,
|
67 |
+
api_name=False,
|
68 |
+
).then(
|
69 |
+
fn=process,
|
70 |
+
inputs=inputs,
|
71 |
+
outputs=result,
|
72 |
+
api_name="canny",
|
73 |
+
concurrency_id="main",
|
74 |
+
)
|
75 |
+
return demo
|
76 |
+
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
from model import Model
|
80 |
+
|
81 |
+
model = Model(task_name="Canny")
|
82 |
+
demo = create_demo(model.process_canny)
|
83 |
+
demo.queue().launch()
|
app_texnet.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from settings import (
|
6 |
+
DEFAULT_IMAGE_RESOLUTION,
|
7 |
+
DEFAULT_NUM_IMAGES,
|
8 |
+
MAX_IMAGE_RESOLUTION,
|
9 |
+
MAX_NUM_IMAGES,
|
10 |
+
MAX_SEED,
|
11 |
+
)
|
12 |
+
from utils import randomize_seed_fn
|
13 |
+
|
14 |
+
|
15 |
+
def create_demo(process):
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
with gr.Row():
|
18 |
+
with gr.Column():
|
19 |
+
image = gr.Image()
|
20 |
+
prompt = gr.Textbox(label="Prompt", submit_btn=True)
|
21 |
+
with gr.Accordion("Advanced options", open=False):
|
22 |
+
num_samples = gr.Slider(
|
23 |
+
label="Number of images", minimum=1, maximum=MAX_NUM_IMAGES, value=DEFAULT_NUM_IMAGES, step=1
|
24 |
+
)
|
25 |
+
image_resolution = gr.Slider(
|
26 |
+
label="Image resolution",
|
27 |
+
minimum=256,
|
28 |
+
maximum=MAX_IMAGE_RESOLUTION,
|
29 |
+
value=DEFAULT_IMAGE_RESOLUTION,
|
30 |
+
step=256,
|
31 |
+
)
|
32 |
+
canny_low_threshold = gr.Slider(
|
33 |
+
label="Canny low threshold", minimum=1, maximum=255, value=100, step=1
|
34 |
+
)
|
35 |
+
canny_high_threshold = gr.Slider(
|
36 |
+
label="Canny high threshold", minimum=1, maximum=255, value=200, step=1
|
37 |
+
)
|
38 |
+
num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=20, step=1)
|
39 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
40 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
41 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
42 |
+
a_prompt = gr.Textbox(label="Additional prompt", value="best quality, extremely detailed")
|
43 |
+
n_prompt = gr.Textbox(
|
44 |
+
label="Negative prompt",
|
45 |
+
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
46 |
+
)
|
47 |
+
with gr.Column():
|
48 |
+
result = gr.Gallery(label="Output", show_label=False, columns=2, object_fit="scale-down")
|
49 |
+
inputs = [
|
50 |
+
image,
|
51 |
+
prompt,
|
52 |
+
a_prompt,
|
53 |
+
n_prompt,
|
54 |
+
num_samples,
|
55 |
+
image_resolution,
|
56 |
+
num_steps,
|
57 |
+
guidance_scale,
|
58 |
+
seed,
|
59 |
+
canny_low_threshold,
|
60 |
+
canny_high_threshold,
|
61 |
+
]
|
62 |
+
prompt.submit(
|
63 |
+
fn=randomize_seed_fn,
|
64 |
+
inputs=[seed, randomize_seed],
|
65 |
+
outputs=seed,
|
66 |
+
queue=False,
|
67 |
+
api_name=False,
|
68 |
+
).then(
|
69 |
+
fn=process,
|
70 |
+
inputs=inputs,
|
71 |
+
outputs=result,
|
72 |
+
api_name="canny",
|
73 |
+
concurrency_id="main",
|
74 |
+
)
|
75 |
+
return demo
|
76 |
+
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
from model import Model
|
80 |
+
|
81 |
+
model = Model(task_name="Canny")
|
82 |
+
demo = create_demo(model.process_canny)
|
83 |
+
demo.queue().launch()
|
cv_utils.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def resize_image(input_image, resolution, interpolation=None):
|
6 |
+
H, W, C = input_image.shape
|
7 |
+
H = float(H)
|
8 |
+
W = float(W)
|
9 |
+
k = float(resolution) / max(H, W)
|
10 |
+
H *= k
|
11 |
+
W *= k
|
12 |
+
H = int(np.round(H / 64.0)) * 64
|
13 |
+
W = int(np.round(W / 64.0)) * 64
|
14 |
+
if interpolation is None:
|
15 |
+
interpolation = cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA
|
16 |
+
img = cv2.resize(input_image, (W, H), interpolation=interpolation)
|
17 |
+
return img
|
depth_estimator.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import PIL.Image
|
3 |
+
from controlnet_aux.util import HWC3
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
from cv_utils import resize_image
|
7 |
+
|
8 |
+
|
9 |
+
class DepthEstimator:
|
10 |
+
def __init__(self):
|
11 |
+
self.model = pipeline("depth-estimation")
|
12 |
+
|
13 |
+
def __call__(self, image: np.ndarray, **kwargs) -> PIL.Image.Image:
|
14 |
+
detect_resolution = kwargs.pop("detect_resolution", 512)
|
15 |
+
image_resolution = kwargs.pop("image_resolution", 512)
|
16 |
+
image = np.array(image)
|
17 |
+
image = HWC3(image)
|
18 |
+
image = resize_image(image, resolution=detect_resolution)
|
19 |
+
image = PIL.Image.fromarray(image)
|
20 |
+
image = self.model(image)
|
21 |
+
image = image["depth"]
|
22 |
+
image = np.array(image)
|
23 |
+
image = HWC3(image)
|
24 |
+
image = resize_image(image, resolution=image_resolution)
|
25 |
+
return PIL.Image.fromarray(image)
|
image_segmentor.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import PIL.Image
|
4 |
+
import torch
|
5 |
+
from controlnet_aux.util import HWC3, ade_palette
|
6 |
+
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
7 |
+
|
8 |
+
from cv_utils import resize_image
|
9 |
+
|
10 |
+
|
11 |
+
class ImageSegmentor:
|
12 |
+
def __init__(self):
|
13 |
+
self.image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
14 |
+
self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
15 |
+
|
16 |
+
@torch.inference_mode()
|
17 |
+
def __call__(self, image: np.ndarray, **kwargs) -> PIL.Image.Image:
|
18 |
+
detect_resolution = kwargs.pop("detect_resolution", 512)
|
19 |
+
image_resolution = kwargs.pop("image_resolution", 512)
|
20 |
+
image = HWC3(image)
|
21 |
+
image = resize_image(image, resolution=detect_resolution)
|
22 |
+
image = PIL.Image.fromarray(image)
|
23 |
+
|
24 |
+
pixel_values = self.image_processor(image, return_tensors="pt").pixel_values
|
25 |
+
outputs = self.image_segmentor(pixel_values)
|
26 |
+
seg = self.image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
27 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
28 |
+
for label, color in enumerate(ade_palette()):
|
29 |
+
color_seg[seg == label, :] = color
|
30 |
+
color_seg = color_seg.astype(np.uint8)
|
31 |
+
|
32 |
+
color_seg = resize_image(color_seg, resolution=image_resolution, interpolation=cv2.INTER_NEAREST)
|
33 |
+
return PIL.Image.fromarray(color_seg)
|
model.py
ADDED
@@ -0,0 +1,670 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import PIL.Image
|
5 |
+
import torch
|
6 |
+
from controlnet_aux.util import HWC3
|
7 |
+
from diffusers import (
|
8 |
+
ControlNetModel,
|
9 |
+
DiffusionPipeline,
|
10 |
+
StableDiffusionControlNetPipeline,
|
11 |
+
UniPCMultistepScheduler,
|
12 |
+
)
|
13 |
+
|
14 |
+
from cv_utils import resize_image
|
15 |
+
from preprocessor import Preprocessor
|
16 |
+
from settings import MAX_IMAGE_RESOLUTION, MAX_NUM_IMAGES
|
17 |
+
|
18 |
+
CONTROLNET_MODEL_IDS = {
|
19 |
+
"Openpose": "lllyasviel/control_v11p_sd15_openpose",
|
20 |
+
"Canny": "lllyasviel/control_v11p_sd15_canny",
|
21 |
+
"MLSD": "lllyasviel/control_v11p_sd15_mlsd",
|
22 |
+
"scribble": "lllyasviel/control_v11p_sd15_scribble",
|
23 |
+
"softedge": "lllyasviel/control_v11p_sd15_softedge",
|
24 |
+
"segmentation": "lllyasviel/control_v11p_sd15_seg",
|
25 |
+
"depth": "lllyasviel/control_v11f1p_sd15_depth",
|
26 |
+
"NormalBae": "lllyasviel/control_v11p_sd15_normalbae",
|
27 |
+
"lineart": "lllyasviel/control_v11p_sd15_lineart",
|
28 |
+
"lineart_anime": "lllyasviel/control_v11p_sd15s2_lineart_anime",
|
29 |
+
"shuffle": "lllyasviel/control_v11e_sd15_shuffle",
|
30 |
+
"ip2p": "lllyasviel/control_v11e_sd15_ip2p",
|
31 |
+
"inpaint": "lllyasviel/control_v11e_sd15_inpaint",
|
32 |
+
}
|
33 |
+
|
34 |
+
|
35 |
+
def download_all_controlnet_weights() -> None:
|
36 |
+
for model_id in CONTROLNET_MODEL_IDS.values():
|
37 |
+
ControlNetModel.from_pretrained(model_id)
|
38 |
+
|
39 |
+
|
40 |
+
class Model:
|
41 |
+
def __init__(
|
42 |
+
self, base_model_id: str = "stable-diffusion-v1-5/stable-diffusion-v1-5", task_name: str = "Canny"
|
43 |
+
) -> None:
|
44 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
45 |
+
self.base_model_id = ""
|
46 |
+
self.task_name = ""
|
47 |
+
self.pipe = self.load_pipe(base_model_id, task_name)
|
48 |
+
self.preprocessor = Preprocessor()
|
49 |
+
|
50 |
+
def load_pipe(self, base_model_id: str, task_name: str) -> DiffusionPipeline:
|
51 |
+
if (
|
52 |
+
base_model_id == self.base_model_id
|
53 |
+
and task_name == self.task_name
|
54 |
+
and hasattr(self, "pipe")
|
55 |
+
and self.pipe is not None
|
56 |
+
):
|
57 |
+
return self.pipe
|
58 |
+
model_id = CONTROLNET_MODEL_IDS[task_name]
|
59 |
+
controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16)
|
60 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
61 |
+
base_model_id, safety_checker=None, controlnet=controlnet, torch_dtype=torch.float16
|
62 |
+
)
|
63 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
64 |
+
if self.device.type == "cuda":
|
65 |
+
pipe.enable_xformers_memory_efficient_attention()
|
66 |
+
pipe.to(self.device)
|
67 |
+
torch.cuda.empty_cache()
|
68 |
+
gc.collect()
|
69 |
+
self.base_model_id = base_model_id
|
70 |
+
self.task_name = task_name
|
71 |
+
return pipe
|
72 |
+
|
73 |
+
def set_base_model(self, base_model_id: str) -> str:
|
74 |
+
if not base_model_id or base_model_id == self.base_model_id:
|
75 |
+
return self.base_model_id
|
76 |
+
del self.pipe
|
77 |
+
torch.cuda.empty_cache()
|
78 |
+
gc.collect()
|
79 |
+
try:
|
80 |
+
self.pipe = self.load_pipe(base_model_id, self.task_name)
|
81 |
+
except Exception: # noqa: BLE001
|
82 |
+
self.pipe = self.load_pipe(self.base_model_id, self.task_name)
|
83 |
+
return self.base_model_id
|
84 |
+
|
85 |
+
def load_controlnet_weight(self, task_name: str) -> None:
|
86 |
+
if task_name == self.task_name:
|
87 |
+
return
|
88 |
+
if self.pipe is not None and hasattr(self.pipe, "controlnet"):
|
89 |
+
del self.pipe.controlnet
|
90 |
+
torch.cuda.empty_cache()
|
91 |
+
gc.collect()
|
92 |
+
model_id = CONTROLNET_MODEL_IDS[task_name]
|
93 |
+
controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16)
|
94 |
+
controlnet.to(self.device)
|
95 |
+
torch.cuda.empty_cache()
|
96 |
+
gc.collect()
|
97 |
+
self.pipe.controlnet = controlnet
|
98 |
+
self.task_name = task_name
|
99 |
+
|
100 |
+
def get_prompt(self, prompt: str, additional_prompt: str) -> str:
|
101 |
+
return additional_prompt if not prompt else f"{prompt}, {additional_prompt}"
|
102 |
+
|
103 |
+
@torch.autocast("cuda")
|
104 |
+
def run_pipe(
|
105 |
+
self,
|
106 |
+
prompt: str,
|
107 |
+
negative_prompt: str,
|
108 |
+
control_image: PIL.Image.Image,
|
109 |
+
num_images: int,
|
110 |
+
num_steps: int,
|
111 |
+
guidance_scale: float,
|
112 |
+
seed: int,
|
113 |
+
) -> list[PIL.Image.Image]:
|
114 |
+
generator = torch.Generator().manual_seed(seed)
|
115 |
+
return self.pipe(
|
116 |
+
prompt=prompt,
|
117 |
+
negative_prompt=negative_prompt,
|
118 |
+
guidance_scale=guidance_scale,
|
119 |
+
num_images_per_prompt=num_images,
|
120 |
+
num_inference_steps=num_steps,
|
121 |
+
generator=generator,
|
122 |
+
image=control_image,
|
123 |
+
).images
|
124 |
+
|
125 |
+
@torch.inference_mode()
|
126 |
+
def process_canny(
|
127 |
+
self,
|
128 |
+
image: np.ndarray,
|
129 |
+
prompt: str,
|
130 |
+
additional_prompt: str,
|
131 |
+
negative_prompt: str,
|
132 |
+
num_images: int,
|
133 |
+
image_resolution: int,
|
134 |
+
num_steps: int,
|
135 |
+
guidance_scale: float,
|
136 |
+
seed: int,
|
137 |
+
low_threshold: int,
|
138 |
+
high_threshold: int,
|
139 |
+
) -> list[PIL.Image.Image]:
|
140 |
+
if image is None:
|
141 |
+
raise ValueError
|
142 |
+
if image_resolution > MAX_IMAGE_RESOLUTION:
|
143 |
+
raise ValueError
|
144 |
+
if num_images > MAX_NUM_IMAGES:
|
145 |
+
raise ValueError
|
146 |
+
|
147 |
+
self.preprocessor.load("Canny")
|
148 |
+
control_image = self.preprocessor(
|
149 |
+
image=image, low_threshold=low_threshold, high_threshold=high_threshold, detect_resolution=image_resolution
|
150 |
+
)
|
151 |
+
|
152 |
+
self.load_controlnet_weight("Canny")
|
153 |
+
results = self.run_pipe(
|
154 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
155 |
+
negative_prompt=negative_prompt,
|
156 |
+
control_image=control_image,
|
157 |
+
num_images=num_images,
|
158 |
+
num_steps=num_steps,
|
159 |
+
guidance_scale=guidance_scale,
|
160 |
+
seed=seed,
|
161 |
+
)
|
162 |
+
return [control_image, *results]
|
163 |
+
|
164 |
+
@torch.inference_mode()
|
165 |
+
def process_mlsd(
|
166 |
+
self,
|
167 |
+
image: np.ndarray,
|
168 |
+
prompt: str,
|
169 |
+
additional_prompt: str,
|
170 |
+
negative_prompt: str,
|
171 |
+
num_images: int,
|
172 |
+
image_resolution: int,
|
173 |
+
preprocess_resolution: int,
|
174 |
+
num_steps: int,
|
175 |
+
guidance_scale: float,
|
176 |
+
seed: int,
|
177 |
+
value_threshold: float,
|
178 |
+
distance_threshold: float,
|
179 |
+
) -> list[PIL.Image.Image]:
|
180 |
+
if image is None:
|
181 |
+
raise ValueError
|
182 |
+
if image_resolution > MAX_IMAGE_RESOLUTION:
|
183 |
+
raise ValueError
|
184 |
+
if num_images > MAX_NUM_IMAGES:
|
185 |
+
raise ValueError
|
186 |
+
|
187 |
+
self.preprocessor.load("MLSD")
|
188 |
+
control_image = self.preprocessor(
|
189 |
+
image=image,
|
190 |
+
image_resolution=image_resolution,
|
191 |
+
detect_resolution=preprocess_resolution,
|
192 |
+
thr_v=value_threshold,
|
193 |
+
thr_d=distance_threshold,
|
194 |
+
)
|
195 |
+
self.load_controlnet_weight("MLSD")
|
196 |
+
results = self.run_pipe(
|
197 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
198 |
+
negative_prompt=negative_prompt,
|
199 |
+
control_image=control_image,
|
200 |
+
num_images=num_images,
|
201 |
+
num_steps=num_steps,
|
202 |
+
guidance_scale=guidance_scale,
|
203 |
+
seed=seed,
|
204 |
+
)
|
205 |
+
return [control_image, *results]
|
206 |
+
|
207 |
+
@torch.inference_mode()
|
208 |
+
def process_scribble(
|
209 |
+
self,
|
210 |
+
image: np.ndarray,
|
211 |
+
prompt: str,
|
212 |
+
additional_prompt: str,
|
213 |
+
negative_prompt: str,
|
214 |
+
num_images: int,
|
215 |
+
image_resolution: int,
|
216 |
+
preprocess_resolution: int,
|
217 |
+
num_steps: int,
|
218 |
+
guidance_scale: float,
|
219 |
+
seed: int,
|
220 |
+
preprocessor_name: str,
|
221 |
+
) -> list[PIL.Image.Image]:
|
222 |
+
if image is None:
|
223 |
+
raise ValueError
|
224 |
+
if image_resolution > MAX_IMAGE_RESOLUTION:
|
225 |
+
raise ValueError
|
226 |
+
if num_images > MAX_NUM_IMAGES:
|
227 |
+
raise ValueError
|
228 |
+
|
229 |
+
if preprocessor_name == "None":
|
230 |
+
image = HWC3(image)
|
231 |
+
image = resize_image(image, resolution=image_resolution)
|
232 |
+
control_image = PIL.Image.fromarray(image)
|
233 |
+
elif preprocessor_name == "HED":
|
234 |
+
self.preprocessor.load(preprocessor_name)
|
235 |
+
control_image = self.preprocessor(
|
236 |
+
image=image,
|
237 |
+
image_resolution=image_resolution,
|
238 |
+
detect_resolution=preprocess_resolution,
|
239 |
+
scribble=False,
|
240 |
+
)
|
241 |
+
elif preprocessor_name == "PidiNet":
|
242 |
+
self.preprocessor.load(preprocessor_name)
|
243 |
+
control_image = self.preprocessor(
|
244 |
+
image=image,
|
245 |
+
image_resolution=image_resolution,
|
246 |
+
detect_resolution=preprocess_resolution,
|
247 |
+
safe=False,
|
248 |
+
)
|
249 |
+
self.load_controlnet_weight("scribble")
|
250 |
+
results = self.run_pipe(
|
251 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
252 |
+
negative_prompt=negative_prompt,
|
253 |
+
control_image=control_image,
|
254 |
+
num_images=num_images,
|
255 |
+
num_steps=num_steps,
|
256 |
+
guidance_scale=guidance_scale,
|
257 |
+
seed=seed,
|
258 |
+
)
|
259 |
+
return [control_image, *results]
|
260 |
+
|
261 |
+
@torch.inference_mode()
|
262 |
+
def process_scribble_interactive(
|
263 |
+
self,
|
264 |
+
image_and_mask: dict[str, np.ndarray | list[np.ndarray]] | None,
|
265 |
+
prompt: str,
|
266 |
+
additional_prompt: str,
|
267 |
+
negative_prompt: str,
|
268 |
+
num_images: int,
|
269 |
+
image_resolution: int,
|
270 |
+
num_steps: int,
|
271 |
+
guidance_scale: float,
|
272 |
+
seed: int,
|
273 |
+
) -> list[PIL.Image.Image]:
|
274 |
+
if image_and_mask is None:
|
275 |
+
raise ValueError
|
276 |
+
if image_resolution > MAX_IMAGE_RESOLUTION:
|
277 |
+
raise ValueError
|
278 |
+
if num_images > MAX_NUM_IMAGES:
|
279 |
+
raise ValueError
|
280 |
+
|
281 |
+
image = 255 - image_and_mask["composite"] # type: ignore
|
282 |
+
image = HWC3(image)
|
283 |
+
image = resize_image(image, resolution=image_resolution)
|
284 |
+
control_image = PIL.Image.fromarray(image)
|
285 |
+
|
286 |
+
self.load_controlnet_weight("scribble")
|
287 |
+
results = self.run_pipe(
|
288 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
289 |
+
negative_prompt=negative_prompt,
|
290 |
+
control_image=control_image,
|
291 |
+
num_images=num_images,
|
292 |
+
num_steps=num_steps,
|
293 |
+
guidance_scale=guidance_scale,
|
294 |
+
seed=seed,
|
295 |
+
)
|
296 |
+
return [control_image, *results]
|
297 |
+
|
298 |
+
@torch.inference_mode()
|
299 |
+
def process_softedge(
|
300 |
+
self,
|
301 |
+
image: np.ndarray,
|
302 |
+
prompt: str,
|
303 |
+
additional_prompt: str,
|
304 |
+
negative_prompt: str,
|
305 |
+
num_images: int,
|
306 |
+
image_resolution: int,
|
307 |
+
preprocess_resolution: int,
|
308 |
+
num_steps: int,
|
309 |
+
guidance_scale: float,
|
310 |
+
seed: int,
|
311 |
+
preprocessor_name: str,
|
312 |
+
) -> list[PIL.Image.Image]:
|
313 |
+
if image is None:
|
314 |
+
raise ValueError
|
315 |
+
if image_resolution > MAX_IMAGE_RESOLUTION:
|
316 |
+
raise ValueError
|
317 |
+
if num_images > MAX_NUM_IMAGES:
|
318 |
+
raise ValueError
|
319 |
+
|
320 |
+
if preprocessor_name == "None":
|
321 |
+
image = HWC3(image)
|
322 |
+
image = resize_image(image, resolution=image_resolution)
|
323 |
+
control_image = PIL.Image.fromarray(image)
|
324 |
+
elif preprocessor_name in ["HED", "HED safe"]:
|
325 |
+
safe = "safe" in preprocessor_name
|
326 |
+
self.preprocessor.load("HED")
|
327 |
+
control_image = self.preprocessor(
|
328 |
+
image=image,
|
329 |
+
image_resolution=image_resolution,
|
330 |
+
detect_resolution=preprocess_resolution,
|
331 |
+
scribble=safe,
|
332 |
+
)
|
333 |
+
elif preprocessor_name in ["PidiNet", "PidiNet safe"]:
|
334 |
+
safe = "safe" in preprocessor_name
|
335 |
+
self.preprocessor.load("PidiNet")
|
336 |
+
control_image = self.preprocessor(
|
337 |
+
image=image,
|
338 |
+
image_resolution=image_resolution,
|
339 |
+
detect_resolution=preprocess_resolution,
|
340 |
+
safe=safe,
|
341 |
+
)
|
342 |
+
else:
|
343 |
+
raise ValueError
|
344 |
+
self.load_controlnet_weight("softedge")
|
345 |
+
results = self.run_pipe(
|
346 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
347 |
+
negative_prompt=negative_prompt,
|
348 |
+
control_image=control_image,
|
349 |
+
num_images=num_images,
|
350 |
+
num_steps=num_steps,
|
351 |
+
guidance_scale=guidance_scale,
|
352 |
+
seed=seed,
|
353 |
+
)
|
354 |
+
return [control_image, *results]
|
355 |
+
|
356 |
+
@torch.inference_mode()
|
357 |
+
def process_openpose(
|
358 |
+
self,
|
359 |
+
image: np.ndarray,
|
360 |
+
prompt: str,
|
361 |
+
additional_prompt: str,
|
362 |
+
negative_prompt: str,
|
363 |
+
num_images: int,
|
364 |
+
image_resolution: int,
|
365 |
+
preprocess_resolution: int,
|
366 |
+
num_steps: int,
|
367 |
+
guidance_scale: float,
|
368 |
+
seed: int,
|
369 |
+
preprocessor_name: str,
|
370 |
+
) -> list[PIL.Image.Image]:
|
371 |
+
if image is None:
|
372 |
+
raise ValueError
|
373 |
+
if image_resolution > MAX_IMAGE_RESOLUTION:
|
374 |
+
raise ValueError
|
375 |
+
if num_images > MAX_NUM_IMAGES:
|
376 |
+
raise ValueError
|
377 |
+
|
378 |
+
if preprocessor_name == "None":
|
379 |
+
image = HWC3(image)
|
380 |
+
image = resize_image(image, resolution=image_resolution)
|
381 |
+
control_image = PIL.Image.fromarray(image)
|
382 |
+
else:
|
383 |
+
self.preprocessor.load("Openpose")
|
384 |
+
control_image = self.preprocessor(
|
385 |
+
image=image,
|
386 |
+
image_resolution=image_resolution,
|
387 |
+
detect_resolution=preprocess_resolution,
|
388 |
+
hand_and_face=True,
|
389 |
+
)
|
390 |
+
self.load_controlnet_weight("Openpose")
|
391 |
+
results = self.run_pipe(
|
392 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
393 |
+
negative_prompt=negative_prompt,
|
394 |
+
control_image=control_image,
|
395 |
+
num_images=num_images,
|
396 |
+
num_steps=num_steps,
|
397 |
+
guidance_scale=guidance_scale,
|
398 |
+
seed=seed,
|
399 |
+
)
|
400 |
+
return [control_image, *results]
|
401 |
+
|
402 |
+
@torch.inference_mode()
|
403 |
+
def process_segmentation(
|
404 |
+
self,
|
405 |
+
image: np.ndarray,
|
406 |
+
prompt: str,
|
407 |
+
additional_prompt: str,
|
408 |
+
negative_prompt: str,
|
409 |
+
num_images: int,
|
410 |
+
image_resolution: int,
|
411 |
+
preprocess_resolution: int,
|
412 |
+
num_steps: int,
|
413 |
+
guidance_scale: float,
|
414 |
+
seed: int,
|
415 |
+
preprocessor_name: str,
|
416 |
+
) -> list[PIL.Image.Image]:
|
417 |
+
if image is None:
|
418 |
+
raise ValueError
|
419 |
+
if image_resolution > MAX_IMAGE_RESOLUTION:
|
420 |
+
raise ValueError
|
421 |
+
if num_images > MAX_NUM_IMAGES:
|
422 |
+
raise ValueError
|
423 |
+
|
424 |
+
if preprocessor_name == "None":
|
425 |
+
image = HWC3(image)
|
426 |
+
image = resize_image(image, resolution=image_resolution)
|
427 |
+
control_image = PIL.Image.fromarray(image)
|
428 |
+
else:
|
429 |
+
self.preprocessor.load(preprocessor_name)
|
430 |
+
control_image = self.preprocessor(
|
431 |
+
image=image,
|
432 |
+
image_resolution=image_resolution,
|
433 |
+
detect_resolution=preprocess_resolution,
|
434 |
+
)
|
435 |
+
self.load_controlnet_weight("segmentation")
|
436 |
+
results = self.run_pipe(
|
437 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
438 |
+
negative_prompt=negative_prompt,
|
439 |
+
control_image=control_image,
|
440 |
+
num_images=num_images,
|
441 |
+
num_steps=num_steps,
|
442 |
+
guidance_scale=guidance_scale,
|
443 |
+
seed=seed,
|
444 |
+
)
|
445 |
+
return [control_image, *results]
|
446 |
+
|
447 |
+
@torch.inference_mode()
|
448 |
+
def process_depth(
|
449 |
+
self,
|
450 |
+
image: np.ndarray,
|
451 |
+
prompt: str,
|
452 |
+
additional_prompt: str,
|
453 |
+
negative_prompt: str,
|
454 |
+
num_images: int,
|
455 |
+
image_resolution: int,
|
456 |
+
preprocess_resolution: int,
|
457 |
+
num_steps: int,
|
458 |
+
guidance_scale: float,
|
459 |
+
seed: int,
|
460 |
+
preprocessor_name: str,
|
461 |
+
) -> list[PIL.Image.Image]:
|
462 |
+
if image is None:
|
463 |
+
raise ValueError
|
464 |
+
if image_resolution > MAX_IMAGE_RESOLUTION:
|
465 |
+
raise ValueError
|
466 |
+
if num_images > MAX_NUM_IMAGES:
|
467 |
+
raise ValueError
|
468 |
+
|
469 |
+
if preprocessor_name == "None":
|
470 |
+
image = HWC3(image)
|
471 |
+
image = resize_image(image, resolution=image_resolution)
|
472 |
+
control_image = PIL.Image.fromarray(image)
|
473 |
+
else:
|
474 |
+
self.preprocessor.load(preprocessor_name)
|
475 |
+
control_image = self.preprocessor(
|
476 |
+
image=image,
|
477 |
+
image_resolution=image_resolution,
|
478 |
+
detect_resolution=preprocess_resolution,
|
479 |
+
)
|
480 |
+
self.load_controlnet_weight("depth")
|
481 |
+
results = self.run_pipe(
|
482 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
483 |
+
negative_prompt=negative_prompt,
|
484 |
+
control_image=control_image,
|
485 |
+
num_images=num_images,
|
486 |
+
num_steps=num_steps,
|
487 |
+
guidance_scale=guidance_scale,
|
488 |
+
seed=seed,
|
489 |
+
)
|
490 |
+
return [control_image, *results]
|
491 |
+
|
492 |
+
@torch.inference_mode()
|
493 |
+
def process_normal(
|
494 |
+
self,
|
495 |
+
image: np.ndarray,
|
496 |
+
prompt: str,
|
497 |
+
additional_prompt: str,
|
498 |
+
negative_prompt: str,
|
499 |
+
num_images: int,
|
500 |
+
image_resolution: int,
|
501 |
+
preprocess_resolution: int,
|
502 |
+
num_steps: int,
|
503 |
+
guidance_scale: float,
|
504 |
+
seed: int,
|
505 |
+
preprocessor_name: str,
|
506 |
+
) -> list[PIL.Image.Image]:
|
507 |
+
if image is None:
|
508 |
+
raise ValueError
|
509 |
+
if image_resolution > MAX_IMAGE_RESOLUTION:
|
510 |
+
raise ValueError
|
511 |
+
if num_images > MAX_NUM_IMAGES:
|
512 |
+
raise ValueError
|
513 |
+
|
514 |
+
if preprocessor_name == "None":
|
515 |
+
image = HWC3(image)
|
516 |
+
image = resize_image(image, resolution=image_resolution)
|
517 |
+
control_image = PIL.Image.fromarray(image)
|
518 |
+
else:
|
519 |
+
self.preprocessor.load("NormalBae")
|
520 |
+
control_image = self.preprocessor(
|
521 |
+
image=image,
|
522 |
+
image_resolution=image_resolution,
|
523 |
+
detect_resolution=preprocess_resolution,
|
524 |
+
)
|
525 |
+
self.load_controlnet_weight("NormalBae")
|
526 |
+
results = self.run_pipe(
|
527 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
528 |
+
negative_prompt=negative_prompt,
|
529 |
+
control_image=control_image,
|
530 |
+
num_images=num_images,
|
531 |
+
num_steps=num_steps,
|
532 |
+
guidance_scale=guidance_scale,
|
533 |
+
seed=seed,
|
534 |
+
)
|
535 |
+
return [control_image, *results]
|
536 |
+
|
537 |
+
@torch.inference_mode()
|
538 |
+
def process_lineart(
|
539 |
+
self,
|
540 |
+
image: np.ndarray,
|
541 |
+
prompt: str,
|
542 |
+
additional_prompt: str,
|
543 |
+
negative_prompt: str,
|
544 |
+
num_images: int,
|
545 |
+
image_resolution: int,
|
546 |
+
preprocess_resolution: int,
|
547 |
+
num_steps: int,
|
548 |
+
guidance_scale: float,
|
549 |
+
seed: int,
|
550 |
+
preprocessor_name: str,
|
551 |
+
) -> list[PIL.Image.Image]:
|
552 |
+
if image is None:
|
553 |
+
raise ValueError
|
554 |
+
if image_resolution > MAX_IMAGE_RESOLUTION:
|
555 |
+
raise ValueError
|
556 |
+
if num_images > MAX_NUM_IMAGES:
|
557 |
+
raise ValueError
|
558 |
+
|
559 |
+
if preprocessor_name in ["None", "None (anime)"]:
|
560 |
+
image = HWC3(image)
|
561 |
+
image = resize_image(image, resolution=image_resolution)
|
562 |
+
control_image = PIL.Image.fromarray(image)
|
563 |
+
elif preprocessor_name in ["Lineart", "Lineart coarse"]:
|
564 |
+
coarse = "coarse" in preprocessor_name
|
565 |
+
self.preprocessor.load("Lineart")
|
566 |
+
control_image = self.preprocessor(
|
567 |
+
image=image,
|
568 |
+
image_resolution=image_resolution,
|
569 |
+
detect_resolution=preprocess_resolution,
|
570 |
+
coarse=coarse,
|
571 |
+
)
|
572 |
+
elif preprocessor_name == "Lineart (anime)":
|
573 |
+
self.preprocessor.load("LineartAnime")
|
574 |
+
control_image = self.preprocessor(
|
575 |
+
image=image,
|
576 |
+
image_resolution=image_resolution,
|
577 |
+
detect_resolution=preprocess_resolution,
|
578 |
+
)
|
579 |
+
if "anime" in preprocessor_name:
|
580 |
+
self.load_controlnet_weight("lineart_anime")
|
581 |
+
else:
|
582 |
+
self.load_controlnet_weight("lineart")
|
583 |
+
results = self.run_pipe(
|
584 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
585 |
+
negative_prompt=negative_prompt,
|
586 |
+
control_image=control_image,
|
587 |
+
num_images=num_images,
|
588 |
+
num_steps=num_steps,
|
589 |
+
guidance_scale=guidance_scale,
|
590 |
+
seed=seed,
|
591 |
+
)
|
592 |
+
return [control_image, *results]
|
593 |
+
|
594 |
+
@torch.inference_mode()
|
595 |
+
def process_shuffle(
|
596 |
+
self,
|
597 |
+
image: np.ndarray,
|
598 |
+
prompt: str,
|
599 |
+
additional_prompt: str,
|
600 |
+
negative_prompt: str,
|
601 |
+
num_images: int,
|
602 |
+
image_resolution: int,
|
603 |
+
num_steps: int,
|
604 |
+
guidance_scale: float,
|
605 |
+
seed: int,
|
606 |
+
preprocessor_name: str,
|
607 |
+
) -> list[PIL.Image.Image]:
|
608 |
+
if image is None:
|
609 |
+
raise ValueError
|
610 |
+
if image_resolution > MAX_IMAGE_RESOLUTION:
|
611 |
+
raise ValueError
|
612 |
+
if num_images > MAX_NUM_IMAGES:
|
613 |
+
raise ValueError
|
614 |
+
|
615 |
+
if preprocessor_name == "None":
|
616 |
+
image = HWC3(image)
|
617 |
+
image = resize_image(image, resolution=image_resolution)
|
618 |
+
control_image = PIL.Image.fromarray(image)
|
619 |
+
else:
|
620 |
+
self.preprocessor.load(preprocessor_name)
|
621 |
+
control_image = self.preprocessor(
|
622 |
+
image=image,
|
623 |
+
image_resolution=image_resolution,
|
624 |
+
)
|
625 |
+
self.load_controlnet_weight("shuffle")
|
626 |
+
results = self.run_pipe(
|
627 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
628 |
+
negative_prompt=negative_prompt,
|
629 |
+
control_image=control_image,
|
630 |
+
num_images=num_images,
|
631 |
+
num_steps=num_steps,
|
632 |
+
guidance_scale=guidance_scale,
|
633 |
+
seed=seed,
|
634 |
+
)
|
635 |
+
return [control_image, *results]
|
636 |
+
|
637 |
+
@torch.inference_mode()
|
638 |
+
def process_ip2p(
|
639 |
+
self,
|
640 |
+
image: np.ndarray,
|
641 |
+
prompt: str,
|
642 |
+
additional_prompt: str,
|
643 |
+
negative_prompt: str,
|
644 |
+
num_images: int,
|
645 |
+
image_resolution: int,
|
646 |
+
num_steps: int,
|
647 |
+
guidance_scale: float,
|
648 |
+
seed: int,
|
649 |
+
) -> list[PIL.Image.Image]:
|
650 |
+
if image is None:
|
651 |
+
raise ValueError
|
652 |
+
if image_resolution > MAX_IMAGE_RESOLUTION:
|
653 |
+
raise ValueError
|
654 |
+
if num_images > MAX_NUM_IMAGES:
|
655 |
+
raise ValueError
|
656 |
+
|
657 |
+
image = HWC3(image)
|
658 |
+
image = resize_image(image, resolution=image_resolution)
|
659 |
+
control_image = PIL.Image.fromarray(image)
|
660 |
+
self.load_controlnet_weight("ip2p")
|
661 |
+
results = self.run_pipe(
|
662 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
663 |
+
negative_prompt=negative_prompt,
|
664 |
+
control_image=control_image,
|
665 |
+
num_images=num_images,
|
666 |
+
num_steps=num_steps,
|
667 |
+
guidance_scale=guidance_scale,
|
668 |
+
seed=seed,
|
669 |
+
)
|
670 |
+
return [control_image, *results]
|
preprocessor.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
from typing import TYPE_CHECKING
|
3 |
+
|
4 |
+
if TYPE_CHECKING:
|
5 |
+
from collections.abc import Callable
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import PIL.Image
|
9 |
+
import torch
|
10 |
+
from controlnet_aux import (
|
11 |
+
CannyDetector,
|
12 |
+
ContentShuffleDetector,
|
13 |
+
HEDdetector,
|
14 |
+
LineartAnimeDetector,
|
15 |
+
LineartDetector,
|
16 |
+
MidasDetector,
|
17 |
+
MLSDdetector,
|
18 |
+
NormalBaeDetector,
|
19 |
+
OpenposeDetector,
|
20 |
+
PidiNetDetector,
|
21 |
+
)
|
22 |
+
from controlnet_aux.util import HWC3
|
23 |
+
|
24 |
+
from cv_utils import resize_image
|
25 |
+
from depth_estimator import DepthEstimator
|
26 |
+
from image_segmentor import ImageSegmentor
|
27 |
+
|
28 |
+
|
29 |
+
class Preprocessor:
|
30 |
+
MODEL_ID = "lllyasviel/Annotators"
|
31 |
+
|
32 |
+
def __init__(self) -> None:
|
33 |
+
self.model: Callable = None # type: ignore
|
34 |
+
self.name = ""
|
35 |
+
|
36 |
+
def load(self, name: str) -> None: # noqa: C901, PLR0912
|
37 |
+
if name == self.name:
|
38 |
+
return
|
39 |
+
if name == "HED":
|
40 |
+
self.model = HEDdetector.from_pretrained(self.MODEL_ID)
|
41 |
+
elif name == "Midas":
|
42 |
+
self.model = MidasDetector.from_pretrained(self.MODEL_ID)
|
43 |
+
elif name == "MLSD":
|
44 |
+
self.model = MLSDdetector.from_pretrained(self.MODEL_ID)
|
45 |
+
elif name == "Openpose":
|
46 |
+
self.model = OpenposeDetector.from_pretrained(self.MODEL_ID)
|
47 |
+
elif name == "PidiNet":
|
48 |
+
self.model = PidiNetDetector.from_pretrained(self.MODEL_ID)
|
49 |
+
elif name == "NormalBae":
|
50 |
+
self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID)
|
51 |
+
elif name == "Lineart":
|
52 |
+
self.model = LineartDetector.from_pretrained(self.MODEL_ID)
|
53 |
+
elif name == "LineartAnime":
|
54 |
+
self.model = LineartAnimeDetector.from_pretrained(self.MODEL_ID)
|
55 |
+
elif name == "Canny":
|
56 |
+
self.model = CannyDetector()
|
57 |
+
elif name == "ContentShuffle":
|
58 |
+
self.model = ContentShuffleDetector()
|
59 |
+
elif name == "DPT":
|
60 |
+
self.model = DepthEstimator()
|
61 |
+
elif name == "UPerNet":
|
62 |
+
self.model = ImageSegmentor()
|
63 |
+
else:
|
64 |
+
raise ValueError
|
65 |
+
torch.cuda.empty_cache()
|
66 |
+
gc.collect()
|
67 |
+
self.name = name
|
68 |
+
|
69 |
+
def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image: # noqa: ANN003
|
70 |
+
if self.name == "Canny":
|
71 |
+
if "detect_resolution" in kwargs:
|
72 |
+
detect_resolution = kwargs.pop("detect_resolution")
|
73 |
+
image = np.array(image)
|
74 |
+
image = HWC3(image)
|
75 |
+
image = resize_image(image, resolution=detect_resolution)
|
76 |
+
image = self.model(image, **kwargs)
|
77 |
+
return PIL.Image.fromarray(image)
|
78 |
+
if self.name == "Midas":
|
79 |
+
detect_resolution = kwargs.pop("detect_resolution", 512)
|
80 |
+
image_resolution = kwargs.pop("image_resolution", 512)
|
81 |
+
image = np.array(image)
|
82 |
+
image = HWC3(image)
|
83 |
+
image = resize_image(image, resolution=detect_resolution)
|
84 |
+
image = self.model(image, **kwargs)
|
85 |
+
image = HWC3(image)
|
86 |
+
image = resize_image(image, resolution=image_resolution)
|
87 |
+
return PIL.Image.fromarray(image)
|
88 |
+
return self.model(image, **kwargs)
|
settings.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
DEFAULT_MODEL_ID = os.getenv("DEFAULT_MODEL_ID", "stable-diffusion-v1-5/stable-diffusion-v1-5")
|
6 |
+
|
7 |
+
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "3"))
|
8 |
+
DEFAULT_NUM_IMAGES = min(MAX_NUM_IMAGES, int(os.getenv("DEFAULT_NUM_IMAGES", "3")))
|
9 |
+
MAX_IMAGE_RESOLUTION = int(os.getenv("MAX_IMAGE_RESOLUTION", "768"))
|
10 |
+
DEFAULT_IMAGE_RESOLUTION = min(MAX_IMAGE_RESOLUTION, int(os.getenv("DEFAULT_IMAGE_RESOLUTION", "768")))
|
11 |
+
|
12 |
+
ALLOW_CHANGING_BASE_MODEL = os.getenv("SPACE_ID") != "hysts/ControlNet-v1-1"
|
13 |
+
SHOW_DUPLICATE_BUTTON = os.getenv("SHOW_DUPLICATE_BUTTON") == "1"
|
14 |
+
|
15 |
+
MAX_SEED = np.iinfo(np.int32).max
|
16 |
+
|
17 |
+
# setup CUDA
|
18 |
+
if os.getenv("CUDA_VISIBLE_DEVICES") is None:
|
19 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "7"
|
utils.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
from settings import MAX_SEED
|
4 |
+
|
5 |
+
|
6 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
7 |
+
if randomize_seed:
|
8 |
+
seed = random.randint(0, MAX_SEED) # noqa: S311
|
9 |
+
return seed
|