File size: 1,288 Bytes
35ebfd2 fa8a5a0 35ebfd2 fa8a5a0 eb7474e fa8a5a0 35ebfd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
import torch
import torchaudio
from transformers import AutoFeatureExtractor, ASTForAudioClassification
model_name = "MIT/ast-finetuned-audioset-10-10-0.4593"
model = ASTForAudioClassification.from_pretrained(model_name)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
device = torch.device("cpu")
model.to(device)
def classify_sound(file_path):
wv, sr = torchaudio.load(file_path)
# Convert to mono
if wv.shape[0] > 1:
wv = wv.mean(dim=0, keepdim=True)
inputs = feature_extractor(
wv.squeeze().numpy(), sampling_rate=44100, return_tensors="pt"
)
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.softmax(logits, dim=-1)[0]
top5 = torch.topk(probs, k=5)
res = [
(model.config.id2label[idx.item()], round(prob.item(), 4))
for idx, prob in zip(top5.indices, top5.values)
]
return dict(res)
demo = gr.Interface(
fn=classify_sound,
inputs=gr.audio(source="upload", type="filepath"),
outputs=gr.Label(num_top_classes=5),
title="Audio Classification with AST",
description="Upload an audio clip (speech, music, ambient sound, etc.). Model: MIT AST fine-tuned on AudioSet (10 classes).",
live=False,
)
demo.launch()
|