app.py
CHANGED
@@ -1,8 +1,46 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
demo.launch()
|
8 |
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
from transformers import AutoFeatureExtractor, ASTForAudioClassification
|
5 |
|
6 |
+
model_name = "MIT/ast-finetuned-audioset-10-10-0.4593"
|
7 |
+
model = ASTForAudioClassification.from_pretrained(model_name)
|
8 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
9 |
+
|
10 |
+
device = torch.device("cpu")
|
11 |
+
model.to(device)
|
12 |
+
|
13 |
+
def classify_sound(file_path):
|
14 |
+
wv, sr = torchaudio.load(file_path)
|
15 |
+
|
16 |
+
# Convert to mono
|
17 |
+
if waveform.shape[0] > 1:
|
18 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
19 |
+
|
20 |
+
inputs = feature_extractor(
|
21 |
+
wv.squeeze().numpy(), sampling_rate=44100, return_tensors="pt"
|
22 |
+
)
|
23 |
+
|
24 |
+
with torch.no_grad():
|
25 |
+
logits = model(**inputs).logits
|
26 |
+
|
27 |
+
probs = torch.softmax(logits, dim=-1)[0]
|
28 |
+
top5 = torch.topk(probs, k=5)
|
29 |
+
|
30 |
+
res = [
|
31 |
+
(model.config.id2label[idx.item()], round(prob.item(), 4))
|
32 |
+
for idx, prob in zip(top5.indices, top5.values)
|
33 |
+
]
|
34 |
+
return dict(res)
|
35 |
+
|
36 |
+
demo = gr.Interface(
|
37 |
+
fn=classify_sound,
|
38 |
+
inputs=gr.audio(source="upload", type="filepath"),
|
39 |
+
outputs=gr.Label(num_top_classes=5),
|
40 |
+
title="Audio Classification with AST",
|
41 |
+
description="Upload an audio clip (speech, music, ambient sound, etc.). Model: MIT AST fine-tuned on AudioSet (10 classes).",
|
42 |
+
live=False,
|
43 |
+
)
|
44 |
|
|
|
45 |
demo.launch()
|
46 |
|