dongyubin
启用选择
5bf9849
raw
history blame
1.82 kB
import gradio as gr
import os
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredURLLoader
from langchain import OpenAI
from langchain import HuggingFaceHub
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ["LANGCHAIN_API_KEY"] = "ls__ae9b316f4ee9475b84f66c616344d713"
os.environ["LANGCHAIN_PROJECT"] = "Sequential-Chain"
def main():
input_checkbox = gr.inputs.Checkbox(label="启用ChatGPT")
input_api_key = gr.inputs.Textbox(label="ChatGPT API Key", lines=1)
input_api_base = gr.inputs.Textbox(label="ChatGPT API 地址(默认无地址)", lines=1)
input_url = gr.inputs.Textbox(label="URL", lines=1)
gradio_interface = gr.Interface(fn=my_inference_function, inputs=[input_checkbox, input_api_key, input_api_base, input_url], outputs="text")
gradio_interface.launch()
def my_inference_function(enabled, api_key, api_base, url):
if enabled:
os.environ["OPENAI_API_KEY"] = api_key
os.environ['OPENAI_API_BASE'] = api_base
llm=OpenAI(temperature=0.7, model_name="gpt-3.5-turbo", max_tokens=1024)
else:
llm = HuggingFaceHub(repo_id="declare-lab/flan-alpaca-large", model_kwargs={"temperature":0.1, "max_length":512})
loader = UnstructuredURLLoader(urls=[url])
data = loader.load()
chain = load_qa_chain(llm=llm, chain_type="stuff")
response = chain.run(input_documents=data, question="""请用中文总结文章的内容,并以下面模版给出结果:
《文章标题》摘要如下:
## 一句话描述
文章摘要内容
## 文章略读
文章要点""")
return response
if __name__ == '__main__':
main()