File size: 1,815 Bytes
3fdead9
3be0237
 
 
 
a7d7295
5bf9849
 
 
 
 
 
dbe832f
3be0237
 
5bf9849
 
 
3fdead9
5bf9849
3be0237
 
5bf9849
 
 
 
 
 
 
3fdead9
 
 
 
be69f07
 
 
 
 
3fdead9
3be0237
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
import os

from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredURLLoader
from langchain import OpenAI
from langchain import HuggingFaceHub
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ["LANGCHAIN_API_KEY"] = "ls__ae9b316f4ee9475b84f66c616344d713"
os.environ["LANGCHAIN_PROJECT"] = "Sequential-Chain"


def main():
    input_checkbox = gr.inputs.Checkbox(label="启用ChatGPT")
    input_api_key = gr.inputs.Textbox(label="ChatGPT API Key", lines=1)
    input_api_base = gr.inputs.Textbox(label="ChatGPT API 地址(默认无地址)", lines=1)
    input_url = gr.inputs.Textbox(label="URL", lines=1)
    gradio_interface = gr.Interface(fn=my_inference_function, inputs=[input_checkbox, input_api_key, input_api_base, input_url], outputs="text")
    gradio_interface.launch()

def my_inference_function(enabled, api_key, api_base, url):
    if enabled:
      os.environ["OPENAI_API_KEY"] = api_key
      os.environ['OPENAI_API_BASE'] = api_base
      llm=OpenAI(temperature=0.7, model_name="gpt-3.5-turbo", max_tokens=1024)
    else: 
      llm = HuggingFaceHub(repo_id="declare-lab/flan-alpaca-large", model_kwargs={"temperature":0.1, "max_length":512})
    loader = UnstructuredURLLoader(urls=[url])
    data = loader.load()
    chain = load_qa_chain(llm=llm, chain_type="stuff")
    response = chain.run(input_documents=data, question="""请用中文总结文章的内容,并以下面模版给出结果:
《文章标题》摘要如下:
## 一句话描述
文章摘要内容
## 文章略读
文章要点""")
    return response

if __name__ == '__main__':
    main()