Spaces:
Sleeping
Sleeping
| # import part | |
| import streamlit as st | |
| from transformers import pipeline | |
| # function part | |
| # function part | |
| def generate_image_caption(image_path): | |
| """Generates a caption for the given image using a pre-trained model.""" | |
| img2caption = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") | |
| result = img2caption(image_path) | |
| return result[0]['generated_text'] | |
| # text2story | |
| def text2story(text): | |
| pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2") | |
| story_text = pipe(text)[0]['generated_text'] | |
| return story_text | |
| def main(): | |
| # App title | |
| st.title("Streamlit Demo on Hugging Face") | |
| # Write some text | |
| st.write("Welcome to a demo app showcasing basic Streamlit components!") | |
| uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
| if uploaded_file is not None: | |
| print(uploaded_file) | |
| st.image(uploaded_image, caption="Uploaded Image", use_column_width=True) | |
| #Stage 1: Image to Text | |
| st.text('Processing img2text...') | |
| image_caption = generate_image_caption(uploaded_image.name) | |
| st.write(image_caption) | |
| if __name__ == "__main__": | |
| main() |