# import part import streamlit as st from transformers import pipeline # function part # function part def generate_image_caption(image_path): """Generates a caption for the given image using a pre-trained model.""" img2caption = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") result = img2caption(image_path) return result[0]['generated_text'] # text2story def text2story(text): pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2") story_text = pipe(text)[0]['generated_text'] return story_text def main(): # App title st.title("Streamlit Demo on Hugging Face") # Write some text st.write("Welcome to a demo app showcasing basic Streamlit components!") uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: print(uploaded_file) st.image(uploaded_image, caption="Uploaded Image", use_column_width=True) #Stage 1: Image to Text st.text('Processing img2text...') image_caption = generate_image_caption(uploaded_image.name) st.write(image_caption) if __name__ == "__main__": main()