test_wprm3 / agent /mini_bench /eval_utils.py
iruno's picture
Upload 245 files
498ffec verified
import re
import random
from collections import Counter
from .utils import load_json, save_json, create_html_report
random.seed(42)
def get_score(response_list: list, indicator: str) -> int:
if len(response_list) == 0:
return [-100]
if isinstance(response_list[0], float):
return response_list
if indicator == "prob":
score_list = []
for response in response_list:
total_score = 0
for judge_probs in response:
yes_prob = judge_probs.get("yes", 0)
in_progress_prob = judge_probs.get("in", 0)
total_score += yes_prob + in_progress_prob * 0.5
if len(response) > 0:
score_list.append(total_score / len(response))
else:
score_list.append(0)
return score_list
else:
score_list = []
for response in response_list:
if indicator == "SCORE":
if "SCORE" in response:
try:
score_str = response.split("SCORE:")[1].split("\n")[0].strip()
except:
score_str = response.split("SCORE:")[-1].strip()
# find first integer
try:
score = re.search(r'-?\d+', score_str).group()
score_list.append(int(score))
except:
score_list.append(0)
else:
try:
score_str = response.split("<answer>")[1].split("</answer>")[0].strip()
except:
score_str = response.split("<answer>")[-1].split("</answer>")[0].strip()
# find "Yes" or "No"
if "Yes" in score_str:
score_list.append(1)
elif "In Progress" in score_str:
score_list.append(0.5)
elif "No" in score_str:
score_list.append(0)
else:
score_list.append(0)
elif indicator == "JUDGE":
try:
judge_str = response.split("JUDGE:")[1].split("\n")[0].strip()
except:
judge_str = response.split("JUDGE:")[-1].strip()
if "Yes" in judge_str:
score_list.append(1)
elif "No" in judge_str:
score_list.append(0)
else:
score_list.append(0)
elif indicator == "CHECKLIST EVALUATION":
if "<answer>" in response:
try:
checklist_str = response.split("<answer>")[1].split("</answer>")[0].strip()
except:
checklist_str = response.split("<answer>")[-1].split("</answer>")[0].strip()
else:
checklist_str = response.split("CHECKLIST EVALUATION:")[-1].strip()
count_yes = checklist_str.count("Yes")
count_no = checklist_str.count("No")
count_in_progress = checklist_str.count("In Progress")
try:
total_score = (count_yes + count_in_progress*0.5) / (count_yes + count_no + count_in_progress)
except:
total_score = 0
score_list.append(total_score)
else:
raise ValueError(f"Invalid indicator: {indicator}")
return score_list
def get_acc_and_mrr(chosen_score, rejected_scores):
if len(rejected_scores) == 0:
return 0, False
same_score_num = rejected_scores.count(chosen_score)
all_scores = rejected_scores + [chosen_score]
sorted_scores = sorted(all_scores, reverse=True)
rank = sorted_scores.index(chosen_score) + 1 + same_score_num # draw penalty
if all(chosen_score > r for r in rejected_scores):
accuracy = True
else:
accuracy = False
return 1 / rank, accuracy
def average_score(score_list: list[float]):
if len(score_list) == 0:
return -100
return sum(score_list) / len(score_list)
def self_consistency_score(score_list: list[float]):
if len(score_list) == 0:
return -100
counter = Counter(score_list)
return max(counter.values()) / len(score_list)
def get_chosen_rejected_scores(data: dict, agg_func: str):
if len(data["chosen"]) == 0:
data["chosen"] = [{"score": [-100]}]
if len(data["rejected"]) == 0:
data["rejected"] = [{"score": [-100]}]
if not isinstance(data["chosen"][0], dict):
data["chosen"][0]["score"] = [-100]
if not isinstance(data["rejected"][0], dict):
data["rejected"][0]["score"] = [-100]
if agg_func == "average":
chosen_score = average_score(data["chosen"][0]["score"])
rejected_scores = [average_score(rejected_score["score"]) for rejected_score in data["rejected"]]
elif agg_func == "self_consistency":
chosen_score = self_consistency_score(data["chosen"][0]["score"])
rejected_scores = [self_consistency_score(rejected_score["score"]) for rejected_score in data["rejected"]]
else:
raise ValueError(f"Invalid agg_func: {agg_func}")
return chosen_score, rejected_scores
def get_score_results(results, agg_func):
score_dict = {"mrr": [], "accuracy": [], "traj_accuracy": []}
task_accuracy = {}
for result in results:
chosen_score, rejected_scores = get_chosen_rejected_scores(result, agg_func)
mrr, accuracy = get_acc_and_mrr(chosen_score, rejected_scores)
score_dict["mrr"].append(mrr)
score_dict["accuracy"].append(accuracy)
if result["task_id"] not in task_accuracy:
task_accuracy[result["task_id"]] = []
task_accuracy[result["task_id"]].append(accuracy)
for task_id in task_accuracy:
if sum(task_accuracy[task_id]) == len(task_accuracy[task_id]):
score_dict["traj_accuracy"].append(True)
else:
score_dict["traj_accuracy"].append(False)
return score_dict
def calculate_stats(results, agg_func: str="average"):
if len(results) == 0:
return {
"MRR": 0,
"Accuracy": 0,
"Traj_Accuracy": 0,
}
total_score = get_score_results(results, agg_func)
stats = {
"MRR": sum(total_score["mrr"]) / len(total_score["mrr"]),
"Accuracy": sum(total_score["accuracy"]) / len(total_score["accuracy"]),
"Traj_Accuracy": sum(total_score["traj_accuracy"]) / len(total_score["traj_accuracy"]),
}
return stats
def group_by_task(results, split_indicator: str):
# sort results by task_id and step_id
results.sort(key=lambda x: (x["task_id"], x["step_id"]))
# group by task_name
grouped_task_dict = {}
for result in results:
task_name = "task_" + str(result["task_id"]) + "_step_" + str(result["step_id"])
if task_name not in grouped_task_dict:
grouped_task_dict[task_name] = {
"task_id": result["task_id"],
"step_id": result["step_id"],
"intent": result["intent"],
"start_url": result["start_url"],
"gt_checklist": result["gt_checklist"],
"generated_checklist": result.get("generated_checklist", None) ,
"trajectory": result["trajectory"],
"current_url": result["current_url"],
"text_observation": result["text_observation"],
# "image_list": result["image_list"],
"chosen": [],
"rejected": [],
"source_name": result["source_name"],
}
response = result["response"] if "response" in result else []
type_data = {
"thought": result["thought"],
"action": result["action"],
"response": response,
"score": get_score(response, split_indicator) if split_indicator != "prob" else get_score(result["judge_probs"], split_indicator),
}
if split_indicator == "prob":
type_data["judge_probs"] = result["judge_probs"]
if result["type"] == "chosen":
grouped_task_dict[task_name]["chosen"].append(type_data)
elif result["type"] == "rejected":
grouped_task_dict[task_name]["rejected"].append(type_data)
return list(grouped_task_dict.values())
def processing_results(results, evaluation_mode: str, num_generate: int, use_batch: bool=False):
if "judge_probs" in results[0]:
split_indicator = "prob"
else:
if evaluation_mode == "judge_with_checklist_generation" or evaluation_mode == "judge_with_gt_checklist":
split_indicator = "CHECKLIST EVALUATION"
else:
split_indicator = "SCORE"
# if use_batch is True, make it flattened
if use_batch:
tmp_results = []
for result in results:
for d in result:
tmp_results.append(d)
grouped_results = group_by_task(tmp_results, split_indicator)
else:
grouped_results = group_by_task(results, split_indicator)
mind2web_results = []
webarena_results = []
mind2web_task_results = []
mind2web_website_results = []
mind2web_domain_results = []
for grouped_result in grouped_results:
if "mind2web" in grouped_result["source_name"]:
mind2web_results.append(grouped_result)
if grouped_result["source_name"] == "mind2web_test_task":
mind2web_task_results.append(grouped_result)
elif grouped_result["source_name"] == "mind2web_test_website":
mind2web_website_results.append(grouped_result)
elif grouped_result["source_name"] == "mind2web_test_domain":
mind2web_domain_results.append(grouped_result)
elif "webarena" in grouped_result["source_name"]:
webarena_results.append(grouped_result)
try:
final_stats = {
"mind2web": {
"MRR": {},
"Accuracy": {},
"Traj_Accuracy": {},
},
"webarena": {
"MRR": {},
"Accuracy": {},
"Traj_Accuracy": {},
},
"mind2web_task": {
"MRR": {},
"Accuracy": {},
"Traj_Accuracy": {},
},
"mind2web_website": {
"MRR": {},
"Accuracy": {},
"Traj_Accuracy": {},
},
"mind2web_domain": {
"MRR": {},
"Accuracy": {},
"Traj_Accuracy": {},
},
}
for source_results in [
("mind2web", mind2web_results),
("webarena", webarena_results),
("mind2web_task", mind2web_task_results),
("mind2web_website", mind2web_website_results),
("mind2web_domain", mind2web_domain_results)
]:
average_stats = calculate_stats(source_results[1], "average")
self_consistency_stats = calculate_stats(source_results[1], "self_consistency")
for metric in average_stats:
final_stats[source_results[0]][metric]["Average"] = average_stats[metric]
for metric in self_consistency_stats:
final_stats[source_results[0]][metric]["Self_Consistency"] = self_consistency_stats[metric]
if num_generate == 1:
for source_name in final_stats:
for metric in final_stats[source_name]:
print(f"{round(100 * final_stats[source_name][metric]['Average'], 2)}", end=", ")
print()
else:
for agg_func in ["Average", "Self_Consistency"]:
print(f"{agg_func}")
for source_name in final_stats:
for metric in final_stats[source_name]:
print(f"{round(100 * final_stats[source_name][metric][agg_func], 2)}", end=", ")
print()
except Exception as e:
print(e)
return grouped_results, None
# add function to convert json format results to html format results
# TODO: implement this function
# create_html_report(results, "results.html")
return grouped_results, final_stats