Spaces:
Sleeping
Sleeping
File size: 12,524 Bytes
498ffec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import re
import random
from collections import Counter
from .utils import load_json, save_json, create_html_report
random.seed(42)
def get_score(response_list: list, indicator: str) -> int:
if len(response_list) == 0:
return [-100]
if isinstance(response_list[0], float):
return response_list
if indicator == "prob":
score_list = []
for response in response_list:
total_score = 0
for judge_probs in response:
yes_prob = judge_probs.get("yes", 0)
in_progress_prob = judge_probs.get("in", 0)
total_score += yes_prob + in_progress_prob * 0.5
if len(response) > 0:
score_list.append(total_score / len(response))
else:
score_list.append(0)
return score_list
else:
score_list = []
for response in response_list:
if indicator == "SCORE":
if "SCORE" in response:
try:
score_str = response.split("SCORE:")[1].split("\n")[0].strip()
except:
score_str = response.split("SCORE:")[-1].strip()
# find first integer
try:
score = re.search(r'-?\d+', score_str).group()
score_list.append(int(score))
except:
score_list.append(0)
else:
try:
score_str = response.split("<answer>")[1].split("</answer>")[0].strip()
except:
score_str = response.split("<answer>")[-1].split("</answer>")[0].strip()
# find "Yes" or "No"
if "Yes" in score_str:
score_list.append(1)
elif "In Progress" in score_str:
score_list.append(0.5)
elif "No" in score_str:
score_list.append(0)
else:
score_list.append(0)
elif indicator == "JUDGE":
try:
judge_str = response.split("JUDGE:")[1].split("\n")[0].strip()
except:
judge_str = response.split("JUDGE:")[-1].strip()
if "Yes" in judge_str:
score_list.append(1)
elif "No" in judge_str:
score_list.append(0)
else:
score_list.append(0)
elif indicator == "CHECKLIST EVALUATION":
if "<answer>" in response:
try:
checklist_str = response.split("<answer>")[1].split("</answer>")[0].strip()
except:
checklist_str = response.split("<answer>")[-1].split("</answer>")[0].strip()
else:
checklist_str = response.split("CHECKLIST EVALUATION:")[-1].strip()
count_yes = checklist_str.count("Yes")
count_no = checklist_str.count("No")
count_in_progress = checklist_str.count("In Progress")
try:
total_score = (count_yes + count_in_progress*0.5) / (count_yes + count_no + count_in_progress)
except:
total_score = 0
score_list.append(total_score)
else:
raise ValueError(f"Invalid indicator: {indicator}")
return score_list
def get_acc_and_mrr(chosen_score, rejected_scores):
if len(rejected_scores) == 0:
return 0, False
same_score_num = rejected_scores.count(chosen_score)
all_scores = rejected_scores + [chosen_score]
sorted_scores = sorted(all_scores, reverse=True)
rank = sorted_scores.index(chosen_score) + 1 + same_score_num # draw penalty
if all(chosen_score > r for r in rejected_scores):
accuracy = True
else:
accuracy = False
return 1 / rank, accuracy
def average_score(score_list: list[float]):
if len(score_list) == 0:
return -100
return sum(score_list) / len(score_list)
def self_consistency_score(score_list: list[float]):
if len(score_list) == 0:
return -100
counter = Counter(score_list)
return max(counter.values()) / len(score_list)
def get_chosen_rejected_scores(data: dict, agg_func: str):
if len(data["chosen"]) == 0:
data["chosen"] = [{"score": [-100]}]
if len(data["rejected"]) == 0:
data["rejected"] = [{"score": [-100]}]
if not isinstance(data["chosen"][0], dict):
data["chosen"][0]["score"] = [-100]
if not isinstance(data["rejected"][0], dict):
data["rejected"][0]["score"] = [-100]
if agg_func == "average":
chosen_score = average_score(data["chosen"][0]["score"])
rejected_scores = [average_score(rejected_score["score"]) for rejected_score in data["rejected"]]
elif agg_func == "self_consistency":
chosen_score = self_consistency_score(data["chosen"][0]["score"])
rejected_scores = [self_consistency_score(rejected_score["score"]) for rejected_score in data["rejected"]]
else:
raise ValueError(f"Invalid agg_func: {agg_func}")
return chosen_score, rejected_scores
def get_score_results(results, agg_func):
score_dict = {"mrr": [], "accuracy": [], "traj_accuracy": []}
task_accuracy = {}
for result in results:
chosen_score, rejected_scores = get_chosen_rejected_scores(result, agg_func)
mrr, accuracy = get_acc_and_mrr(chosen_score, rejected_scores)
score_dict["mrr"].append(mrr)
score_dict["accuracy"].append(accuracy)
if result["task_id"] not in task_accuracy:
task_accuracy[result["task_id"]] = []
task_accuracy[result["task_id"]].append(accuracy)
for task_id in task_accuracy:
if sum(task_accuracy[task_id]) == len(task_accuracy[task_id]):
score_dict["traj_accuracy"].append(True)
else:
score_dict["traj_accuracy"].append(False)
return score_dict
def calculate_stats(results, agg_func: str="average"):
if len(results) == 0:
return {
"MRR": 0,
"Accuracy": 0,
"Traj_Accuracy": 0,
}
total_score = get_score_results(results, agg_func)
stats = {
"MRR": sum(total_score["mrr"]) / len(total_score["mrr"]),
"Accuracy": sum(total_score["accuracy"]) / len(total_score["accuracy"]),
"Traj_Accuracy": sum(total_score["traj_accuracy"]) / len(total_score["traj_accuracy"]),
}
return stats
def group_by_task(results, split_indicator: str):
# sort results by task_id and step_id
results.sort(key=lambda x: (x["task_id"], x["step_id"]))
# group by task_name
grouped_task_dict = {}
for result in results:
task_name = "task_" + str(result["task_id"]) + "_step_" + str(result["step_id"])
if task_name not in grouped_task_dict:
grouped_task_dict[task_name] = {
"task_id": result["task_id"],
"step_id": result["step_id"],
"intent": result["intent"],
"start_url": result["start_url"],
"gt_checklist": result["gt_checklist"],
"generated_checklist": result.get("generated_checklist", None) ,
"trajectory": result["trajectory"],
"current_url": result["current_url"],
"text_observation": result["text_observation"],
# "image_list": result["image_list"],
"chosen": [],
"rejected": [],
"source_name": result["source_name"],
}
response = result["response"] if "response" in result else []
type_data = {
"thought": result["thought"],
"action": result["action"],
"response": response,
"score": get_score(response, split_indicator) if split_indicator != "prob" else get_score(result["judge_probs"], split_indicator),
}
if split_indicator == "prob":
type_data["judge_probs"] = result["judge_probs"]
if result["type"] == "chosen":
grouped_task_dict[task_name]["chosen"].append(type_data)
elif result["type"] == "rejected":
grouped_task_dict[task_name]["rejected"].append(type_data)
return list(grouped_task_dict.values())
def processing_results(results, evaluation_mode: str, num_generate: int, use_batch: bool=False):
if "judge_probs" in results[0]:
split_indicator = "prob"
else:
if evaluation_mode == "judge_with_checklist_generation" or evaluation_mode == "judge_with_gt_checklist":
split_indicator = "CHECKLIST EVALUATION"
else:
split_indicator = "SCORE"
# if use_batch is True, make it flattened
if use_batch:
tmp_results = []
for result in results:
for d in result:
tmp_results.append(d)
grouped_results = group_by_task(tmp_results, split_indicator)
else:
grouped_results = group_by_task(results, split_indicator)
mind2web_results = []
webarena_results = []
mind2web_task_results = []
mind2web_website_results = []
mind2web_domain_results = []
for grouped_result in grouped_results:
if "mind2web" in grouped_result["source_name"]:
mind2web_results.append(grouped_result)
if grouped_result["source_name"] == "mind2web_test_task":
mind2web_task_results.append(grouped_result)
elif grouped_result["source_name"] == "mind2web_test_website":
mind2web_website_results.append(grouped_result)
elif grouped_result["source_name"] == "mind2web_test_domain":
mind2web_domain_results.append(grouped_result)
elif "webarena" in grouped_result["source_name"]:
webarena_results.append(grouped_result)
try:
final_stats = {
"mind2web": {
"MRR": {},
"Accuracy": {},
"Traj_Accuracy": {},
},
"webarena": {
"MRR": {},
"Accuracy": {},
"Traj_Accuracy": {},
},
"mind2web_task": {
"MRR": {},
"Accuracy": {},
"Traj_Accuracy": {},
},
"mind2web_website": {
"MRR": {},
"Accuracy": {},
"Traj_Accuracy": {},
},
"mind2web_domain": {
"MRR": {},
"Accuracy": {},
"Traj_Accuracy": {},
},
}
for source_results in [
("mind2web", mind2web_results),
("webarena", webarena_results),
("mind2web_task", mind2web_task_results),
("mind2web_website", mind2web_website_results),
("mind2web_domain", mind2web_domain_results)
]:
average_stats = calculate_stats(source_results[1], "average")
self_consistency_stats = calculate_stats(source_results[1], "self_consistency")
for metric in average_stats:
final_stats[source_results[0]][metric]["Average"] = average_stats[metric]
for metric in self_consistency_stats:
final_stats[source_results[0]][metric]["Self_Consistency"] = self_consistency_stats[metric]
if num_generate == 1:
for source_name in final_stats:
for metric in final_stats[source_name]:
print(f"{round(100 * final_stats[source_name][metric]['Average'], 2)}", end=", ")
print()
else:
for agg_func in ["Average", "Self_Consistency"]:
print(f"{agg_func}")
for source_name in final_stats:
for metric in final_stats[source_name]:
print(f"{round(100 * final_stats[source_name][metric][agg_func], 2)}", end=", ")
print()
except Exception as e:
print(e)
return grouped_results, None
# add function to convert json format results to html format results
# TODO: implement this function
# create_html_report(results, "results.html")
return grouped_results, final_stats |