File size: 10,328 Bytes
b3baa56
d2e30cf
3d8fdbe
 
 
 
 
 
d2e30cf
 
 
b3baa56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os

# 🚨 HF cache dizinini /tmp altına al!
os.environ["HF_HOME"] = "/tmp/hf"
os.environ["HF_DATASETS_CACHE"] = "/tmp/hf/datasets"
os.environ["HF_METRICS_CACHE"] = "/tmp/hf/metrics"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf/transformers"
os.environ["HF_HUB_CACHE"] = "/tmp/hf/hub"



import asyncio
import logging
import re
import yaml
import torch
import numpy as np
from functools import lru_cache
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer, CrossEncoder
from pinecone import Pinecone
from pathlib import Path
from dotenv import load_dotenv
from typing import Dict

# === LOGGING ===
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# === CONFIG LOAD ===
CONFIG_PATH = Path(__file__).resolve().parent / "config.yaml"
def load_config() -> Dict:
    try:
        with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
            return yaml.safe_load(f)
    except Exception as e:
        logger.error(f"Konfigürasyon dosyası yüklenemedi: {e}")
        return {
            "pinecone": {"top_k": 10, "rerank_top": 5, "batch_size": 32},
            "model": {"max_new_tokens": 50, "temperature": 0.7},
            "cache": {"maxsize": 100}
        }
config = load_config()

# === ENV LOAD ===
env_path = Path(__file__).resolve().parent.parent / "RAG" / ".env"
load_dotenv(dotenv_path=env_path)

PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
PINECONE_ENV = os.getenv("PINECONE_ENVIRONMENT")
PINECONE_INDEX_NAME = os.getenv("PINECONE_INDEX_NAME")
if not all([PINECONE_API_KEY, PINECONE_ENV, PINECONE_INDEX_NAME]):
    raise ValueError("Pinecone ortam değişkenleri eksik!")

# === PINECONE CONNECT ===
pinecone_client = Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
try:
    index = pinecone_client.Index(PINECONE_INDEX_NAME)
    index_stats = index.describe_index_stats()
    logger.info(f"Pinecone index stats: {index_stats}")
except Exception as e:
    logger.error(f"Pinecone bağlantı hatası: {e}")
    raise

# === MODEL LOAD ===
MODEL_PATH = "iamseyhmus7/GenerationTurkishGPT2_final"
try:
    tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
    model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
    tokenizer.pad_token = tokenizer.eos_token
    model.config.pad_token_id = tokenizer.pad_token_id
    model.eval()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    logger.info(f"Model {MODEL_PATH} Hugging Face Hub'dan yüklendi, cihaz: {device}")
except Exception as e:
    logger.error(f"Model yükleme hatası: {e}")
    raise

# === EMBEDDING MODELS ===
embedder = SentenceTransformer("intfloat/multilingual-e5-large", device="cpu")
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2", device="cpu")
logger.info("Embedding ve reranking modelleri yüklendi")

# === FASTAPI ===
app = FastAPI()
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
app.mount("/static", StaticFiles(directory=os.path.join(BASE_DIR, "static")), name="static")
templates = Jinja2Templates(directory=os.path.join(BASE_DIR, "templates"))

class QuestionRequest(BaseModel):
    query: str

def clean_text_output(text: str) -> str:
    """
    Tüm prompt, komut, yönerge, link ve gereksiz açıklamaları temizler.
    Sadece net, kısa yanıtı bırakır.
    """
    # Modelin başındaki yönerge/talimat cümleleri
    text = re.sub(
        r"^(Sadece doğru, kısa ve açık bilgi ver\.? Ekstra açıklama veya kaynak ekleme\.?)", 
        "", text, flags=re.IGNORECASE
    )
    # Büyük prompt ve yönergeleri sil (Metin:, output:, Cevap:)
    text = re.sub(r"^.*?(Metin:|output:|Cevap:)", "", text, flags=re.IGNORECASE | re.DOTALL)
    # Tek satırlık açıklama veya yönerge kalanlarını sil
    text = re.sub(r"^(Aşağıdaki haber.*|Yalnızca olay özeti.*|Cevapta sadece.*|Metin:|output:|Cevap:)", "", text, flags=re.IGNORECASE | re.MULTILINE)
    # 'Detaylı bilgi için', 'Daha fazla bilgi için', 'Wikipedia', 'Kaynak:', linkler vs.
    text = re.sub(r"(Detaylı bilgi için.*|Daha fazla bilgi için.*|Wikipedia.*|Kaynak:.*|https?://\S+)", "", text, flags=re.IGNORECASE)
    # Madde işaretleri ve baştaki sayı/karakterler
    text = re.sub(r"^\- ", "", text, flags=re.MULTILINE)
    text = re.sub(r"^\d+[\.\)]?\s+", "", text, flags=re.MULTILINE)
    ## Model promptlarının başında kalan talimat cümlelerini sil
    text = re.sub(
        r"^(Sadece doğru, kısa ve açık bilgi ver\.? Ekstra açıklama veya kaynak ekleme\.?)", 
        "", text, flags=re.IGNORECASE
    )
    # Tekrarlı boşluklar ve baş/son boşluk
    text = re.sub(r"\s+", " ", text).strip()
    return text

@lru_cache(maxsize=config["cache"]["maxsize"])
def get_embedding(text: str, max_length: int = 512) -> np.ndarray:
    formatted = f"query: {text.strip()}"[:max_length]
    return embedder.encode(formatted, normalize_embeddings=True)

@lru_cache(maxsize=32)
def pinecone_query_cached(query: str, top_k: int) -> tuple:
    query_embedding = get_embedding(query)
    result = index.query(vector=query_embedding.tolist(), top_k=top_k, include_metadata=True)
    matches = result.get("matches", [])
    output = []
    for m in matches:
        text = m.get("metadata", {}).get("text", "").strip()
        url = m.get("metadata", {}).get("url", "")
        if text:
            output.append((text, url))
    return tuple(output)

async def retrieve_sources_from_pinecone(query: str, top_k: int = None) -> Dict[str, any]:
    top_k = top_k or config["pinecone"]["top_k"]
    output = pinecone_query_cached(query, top_k)
    if not output:
        return {"sources": "", "results": [], "source_url": ""}
    # Cross-encoder ile yeniden sıralama
    sentence_pairs = [[query, text] for text, url in output]
    scores = await asyncio.to_thread(cross_encoder.predict, sentence_pairs)
    reranked = [(float(score), text, url) for score, (text, url) in zip(scores, output)]
    reranked.sort(key=lambda x: x[0], reverse=True)
    top_results = reranked[:1]
    top_texts = [text for _, text, _ in top_results]
    source_url = top_results[0][2] if top_results else ""
    return {"sources": "\n".join(top_texts), "results": top_results, "source_url": source_url}

async def generate_model_response(question: str) -> str:
    prompt = (
        f"input: {question}\noutput:"
        "Sadece doğru, kısa ve açık bilgi ver. Ekstra açıklama veya kaynak ekleme."
    )
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=256).to(device)
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=64,
            do_sample=False,
            num_beams=5,
            no_repeat_ngram_size=3,
            early_stopping=True,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id
        )
    answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return answer

def extract_self_answer(output: str) -> str:
    # Eğer "output:" etiketi varsa, sonrasını al
    match = re.search(r"output:(.*)", output, flags=re.IGNORECASE | re.DOTALL)
    if match:
        return match.group(1).strip()
    # Eğer "Cevap:" varsa, sonrasını al
    if "Cevap:" in output:
        return output.split("Cevap:")[-1].strip()
    return output.strip()

async def selfrag_agent(question: str):
    # 1. VDB cevabı ve kaynak url
    result = await retrieve_sources_from_pinecone(question)
    vdb_paragraph = result.get("sources", "").strip()
    source_url = result.get("source_url", "")

    # 2. Model cevabı
    model_paragraph = await generate_model_response(question)
    model_paragraph = extract_self_answer(model_paragraph)

    # 3. Temizle (SADECE METİN DEĞERLERİNDE!)
    vdb_paragraph = clean_text_output(vdb_paragraph)
    model_paragraph = clean_text_output(model_paragraph)

    # 4. Cross-encoder ile skorlama
    candidates = []
    candidate_urls = []
    label_names = []
    if vdb_paragraph:
        candidates.append(vdb_paragraph)
        candidate_urls.append(source_url)
        label_names.append("VDB")
    if model_paragraph:
        candidates.append(model_paragraph)
        candidate_urls.append(None)
        label_names.append("MODEL")

    if not candidates:
        return {"answer": "Cevap bulunamadı.", "source_url": None}

    sentence_pairs = [[question, cand] for cand in candidates]
    scores = await asyncio.to_thread(cross_encoder.predict, sentence_pairs)
    print(f"VDB Skor: {scores[0]:.4f}")
    if len(scores) > 1:
        print(f"Model Skor: {scores[1]:.4f}")

    # === Seçim Kuralları ===
    if len(scores) == 2:
        vdb_score = scores[0]
        model_score = scores[1]
        # Eğer modelin skoru, VDB'nin 2 katından fazlaysa modeli döndür
        if model_score > 1.5 * vdb_score:
            best_idx = 1
        else:
            best_idx = 0
    else:
        # Sadece VDB veya model varsa, en yüksek skoru seç
        best_idx = int(np.argmax(scores))

    final_answer = candidates[best_idx]
    final_source_url = candidate_urls[best_idx]

    return {
        "answer": final_answer,
        "source_url": final_source_url
    }


@app.get("/")
async def home(request: Request):
    return templates.TemplateResponse("index.html", {"request": request})

@app.post("/api/ask")
async def ask_question(request: QuestionRequest):
    try:
        question = request.query.strip()
        if not question:
            return JSONResponse(status_code=400, content={"error": "Sorgu boş olamaz."})
        result = await selfrag_agent(question)
        response_text = result["answer"]
        if result["source_url"]:
            response_text += f'<br><br>Daha fazla bilgi için: <a href="{result["source_url"]}" target="_blank">{result["source_url"]}</a>'
        return JSONResponse(content={"answer": response_text})
    except Exception as e:
        logger.error(f"API hatası: {e}")
        return JSONResponse(status_code=500, content={"error": f"Sunucu hatası: {str(e)}"})