File size: 10,328 Bytes
b3baa56 d2e30cf 3d8fdbe d2e30cf b3baa56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import os
# 🚨 HF cache dizinini /tmp altına al!
os.environ["HF_HOME"] = "/tmp/hf"
os.environ["HF_DATASETS_CACHE"] = "/tmp/hf/datasets"
os.environ["HF_METRICS_CACHE"] = "/tmp/hf/metrics"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf/transformers"
os.environ["HF_HUB_CACHE"] = "/tmp/hf/hub"
import asyncio
import logging
import re
import yaml
import torch
import numpy as np
from functools import lru_cache
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer, CrossEncoder
from pinecone import Pinecone
from pathlib import Path
from dotenv import load_dotenv
from typing import Dict
# === LOGGING ===
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# === CONFIG LOAD ===
CONFIG_PATH = Path(__file__).resolve().parent / "config.yaml"
def load_config() -> Dict:
try:
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
return yaml.safe_load(f)
except Exception as e:
logger.error(f"Konfigürasyon dosyası yüklenemedi: {e}")
return {
"pinecone": {"top_k": 10, "rerank_top": 5, "batch_size": 32},
"model": {"max_new_tokens": 50, "temperature": 0.7},
"cache": {"maxsize": 100}
}
config = load_config()
# === ENV LOAD ===
env_path = Path(__file__).resolve().parent.parent / "RAG" / ".env"
load_dotenv(dotenv_path=env_path)
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
PINECONE_ENV = os.getenv("PINECONE_ENVIRONMENT")
PINECONE_INDEX_NAME = os.getenv("PINECONE_INDEX_NAME")
if not all([PINECONE_API_KEY, PINECONE_ENV, PINECONE_INDEX_NAME]):
raise ValueError("Pinecone ortam değişkenleri eksik!")
# === PINECONE CONNECT ===
pinecone_client = Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
try:
index = pinecone_client.Index(PINECONE_INDEX_NAME)
index_stats = index.describe_index_stats()
logger.info(f"Pinecone index stats: {index_stats}")
except Exception as e:
logger.error(f"Pinecone bağlantı hatası: {e}")
raise
# === MODEL LOAD ===
MODEL_PATH = "iamseyhmus7/GenerationTurkishGPT2_final"
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.pad_token_id
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
logger.info(f"Model {MODEL_PATH} Hugging Face Hub'dan yüklendi, cihaz: {device}")
except Exception as e:
logger.error(f"Model yükleme hatası: {e}")
raise
# === EMBEDDING MODELS ===
embedder = SentenceTransformer("intfloat/multilingual-e5-large", device="cpu")
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2", device="cpu")
logger.info("Embedding ve reranking modelleri yüklendi")
# === FASTAPI ===
app = FastAPI()
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
app.mount("/static", StaticFiles(directory=os.path.join(BASE_DIR, "static")), name="static")
templates = Jinja2Templates(directory=os.path.join(BASE_DIR, "templates"))
class QuestionRequest(BaseModel):
query: str
def clean_text_output(text: str) -> str:
"""
Tüm prompt, komut, yönerge, link ve gereksiz açıklamaları temizler.
Sadece net, kısa yanıtı bırakır.
"""
# Modelin başındaki yönerge/talimat cümleleri
text = re.sub(
r"^(Sadece doğru, kısa ve açık bilgi ver\.? Ekstra açıklama veya kaynak ekleme\.?)",
"", text, flags=re.IGNORECASE
)
# Büyük prompt ve yönergeleri sil (Metin:, output:, Cevap:)
text = re.sub(r"^.*?(Metin:|output:|Cevap:)", "", text, flags=re.IGNORECASE | re.DOTALL)
# Tek satırlık açıklama veya yönerge kalanlarını sil
text = re.sub(r"^(Aşağıdaki haber.*|Yalnızca olay özeti.*|Cevapta sadece.*|Metin:|output:|Cevap:)", "", text, flags=re.IGNORECASE | re.MULTILINE)
# 'Detaylı bilgi için', 'Daha fazla bilgi için', 'Wikipedia', 'Kaynak:', linkler vs.
text = re.sub(r"(Detaylı bilgi için.*|Daha fazla bilgi için.*|Wikipedia.*|Kaynak:.*|https?://\S+)", "", text, flags=re.IGNORECASE)
# Madde işaretleri ve baştaki sayı/karakterler
text = re.sub(r"^\- ", "", text, flags=re.MULTILINE)
text = re.sub(r"^\d+[\.\)]?\s+", "", text, flags=re.MULTILINE)
## Model promptlarının başında kalan talimat cümlelerini sil
text = re.sub(
r"^(Sadece doğru, kısa ve açık bilgi ver\.? Ekstra açıklama veya kaynak ekleme\.?)",
"", text, flags=re.IGNORECASE
)
# Tekrarlı boşluklar ve baş/son boşluk
text = re.sub(r"\s+", " ", text).strip()
return text
@lru_cache(maxsize=config["cache"]["maxsize"])
def get_embedding(text: str, max_length: int = 512) -> np.ndarray:
formatted = f"query: {text.strip()}"[:max_length]
return embedder.encode(formatted, normalize_embeddings=True)
@lru_cache(maxsize=32)
def pinecone_query_cached(query: str, top_k: int) -> tuple:
query_embedding = get_embedding(query)
result = index.query(vector=query_embedding.tolist(), top_k=top_k, include_metadata=True)
matches = result.get("matches", [])
output = []
for m in matches:
text = m.get("metadata", {}).get("text", "").strip()
url = m.get("metadata", {}).get("url", "")
if text:
output.append((text, url))
return tuple(output)
async def retrieve_sources_from_pinecone(query: str, top_k: int = None) -> Dict[str, any]:
top_k = top_k or config["pinecone"]["top_k"]
output = pinecone_query_cached(query, top_k)
if not output:
return {"sources": "", "results": [], "source_url": ""}
# Cross-encoder ile yeniden sıralama
sentence_pairs = [[query, text] for text, url in output]
scores = await asyncio.to_thread(cross_encoder.predict, sentence_pairs)
reranked = [(float(score), text, url) for score, (text, url) in zip(scores, output)]
reranked.sort(key=lambda x: x[0], reverse=True)
top_results = reranked[:1]
top_texts = [text for _, text, _ in top_results]
source_url = top_results[0][2] if top_results else ""
return {"sources": "\n".join(top_texts), "results": top_results, "source_url": source_url}
async def generate_model_response(question: str) -> str:
prompt = (
f"input: {question}\noutput:"
"Sadece doğru, kısa ve açık bilgi ver. Ekstra açıklama veya kaynak ekleme."
)
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=256).to(device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=64,
do_sample=False,
num_beams=5,
no_repeat_ngram_size=3,
early_stopping=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
def extract_self_answer(output: str) -> str:
# Eğer "output:" etiketi varsa, sonrasını al
match = re.search(r"output:(.*)", output, flags=re.IGNORECASE | re.DOTALL)
if match:
return match.group(1).strip()
# Eğer "Cevap:" varsa, sonrasını al
if "Cevap:" in output:
return output.split("Cevap:")[-1].strip()
return output.strip()
async def selfrag_agent(question: str):
# 1. VDB cevabı ve kaynak url
result = await retrieve_sources_from_pinecone(question)
vdb_paragraph = result.get("sources", "").strip()
source_url = result.get("source_url", "")
# 2. Model cevabı
model_paragraph = await generate_model_response(question)
model_paragraph = extract_self_answer(model_paragraph)
# 3. Temizle (SADECE METİN DEĞERLERİNDE!)
vdb_paragraph = clean_text_output(vdb_paragraph)
model_paragraph = clean_text_output(model_paragraph)
# 4. Cross-encoder ile skorlama
candidates = []
candidate_urls = []
label_names = []
if vdb_paragraph:
candidates.append(vdb_paragraph)
candidate_urls.append(source_url)
label_names.append("VDB")
if model_paragraph:
candidates.append(model_paragraph)
candidate_urls.append(None)
label_names.append("MODEL")
if not candidates:
return {"answer": "Cevap bulunamadı.", "source_url": None}
sentence_pairs = [[question, cand] for cand in candidates]
scores = await asyncio.to_thread(cross_encoder.predict, sentence_pairs)
print(f"VDB Skor: {scores[0]:.4f}")
if len(scores) > 1:
print(f"Model Skor: {scores[1]:.4f}")
# === Seçim Kuralları ===
if len(scores) == 2:
vdb_score = scores[0]
model_score = scores[1]
# Eğer modelin skoru, VDB'nin 2 katından fazlaysa modeli döndür
if model_score > 1.5 * vdb_score:
best_idx = 1
else:
best_idx = 0
else:
# Sadece VDB veya model varsa, en yüksek skoru seç
best_idx = int(np.argmax(scores))
final_answer = candidates[best_idx]
final_source_url = candidate_urls[best_idx]
return {
"answer": final_answer,
"source_url": final_source_url
}
@app.get("/")
async def home(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
@app.post("/api/ask")
async def ask_question(request: QuestionRequest):
try:
question = request.query.strip()
if not question:
return JSONResponse(status_code=400, content={"error": "Sorgu boş olamaz."})
result = await selfrag_agent(question)
response_text = result["answer"]
if result["source_url"]:
response_text += f'<br><br>Daha fazla bilgi için: <a href="{result["source_url"]}" target="_blank">{result["source_url"]}</a>'
return JSONResponse(content={"answer": response_text})
except Exception as e:
logger.error(f"API hatası: {e}")
return JSONResponse(status_code=500, content={"error": f"Sunucu hatası: {str(e)}"})
|