Update app/model.py
Browse files- app/model.py +260 -255
app/model.py
CHANGED
@@ -1,255 +1,260 @@
|
|
1 |
-
import os
|
2 |
-
import asyncio
|
3 |
-
import logging
|
4 |
-
import re
|
5 |
-
import yaml
|
6 |
-
import torch
|
7 |
-
import numpy as np
|
8 |
-
from functools import lru_cache
|
9 |
-
from fastapi import FastAPI, Request
|
10 |
-
from fastapi.responses import JSONResponse
|
11 |
-
from fastapi.staticfiles import StaticFiles
|
12 |
-
from fastapi.templating import Jinja2Templates
|
13 |
-
from pydantic import BaseModel
|
14 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
15 |
-
from sentence_transformers import SentenceTransformer, CrossEncoder
|
16 |
-
from pinecone import Pinecone
|
17 |
-
from pathlib import Path
|
18 |
-
from dotenv import load_dotenv
|
19 |
-
from typing import Dict
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
}
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
model.
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
# ===
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
#
|
100 |
-
text = re.sub(
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
text = re.sub(r"
|
108 |
-
|
109 |
-
text = re.sub(
|
110 |
-
|
111 |
-
|
112 |
-
)
|
113 |
-
|
114 |
-
text = re.sub(
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
return
|
121 |
-
|
122 |
-
@lru_cache(maxsize=
|
123 |
-
def
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
#
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
model_paragraph =
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
if
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import asyncio
|
3 |
+
import logging
|
4 |
+
import re
|
5 |
+
import yaml
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
from functools import lru_cache
|
9 |
+
from fastapi import FastAPI, Request
|
10 |
+
from fastapi.responses import JSONResponse
|
11 |
+
from fastapi.staticfiles import StaticFiles
|
12 |
+
from fastapi.templating import Jinja2Templates
|
13 |
+
from pydantic import BaseModel
|
14 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
15 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
16 |
+
from pinecone import Pinecone
|
17 |
+
from pathlib import Path
|
18 |
+
from dotenv import load_dotenv
|
19 |
+
from typing import Dict
|
20 |
+
|
21 |
+
os.environ["HF_HOME"] = "/data"
|
22 |
+
os.environ["HF_DATASETS_CACHE"] = "/data/datasets"
|
23 |
+
os.environ["HF_METRICS_CACHE"] = "/data/metrics"
|
24 |
+
os.environ["TRANSFORMERS_CACHE"] = "/data/transformers"
|
25 |
+
os.environ["HF_HUB_CACHE"] = "/data/hub"
|
26 |
+
# === LOGGING ===
|
27 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
+
# === CONFIG LOAD ===
|
31 |
+
CONFIG_PATH = Path(__file__).resolve().parent / "config.yaml"
|
32 |
+
def load_config() -> Dict:
|
33 |
+
try:
|
34 |
+
with open(CONFIG_PATH, 'r', encoding='utf-8') as f:
|
35 |
+
return yaml.safe_load(f)
|
36 |
+
except Exception as e:
|
37 |
+
logger.error(f"Konfigürasyon dosyası yüklenemedi: {e}")
|
38 |
+
return {
|
39 |
+
"pinecone": {"top_k": 10, "rerank_top": 5, "batch_size": 32},
|
40 |
+
"model": {"max_new_tokens": 50, "temperature": 0.7},
|
41 |
+
"cache": {"maxsize": 100}
|
42 |
+
}
|
43 |
+
config = load_config()
|
44 |
+
|
45 |
+
# === ENV LOAD ===
|
46 |
+
env_path = Path(__file__).resolve().parent.parent / "RAG" / ".env"
|
47 |
+
load_dotenv(dotenv_path=env_path)
|
48 |
+
|
49 |
+
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
|
50 |
+
PINECONE_ENV = os.getenv("PINECONE_ENVIRONMENT")
|
51 |
+
PINECONE_INDEX_NAME = os.getenv("PINECONE_INDEX_NAME")
|
52 |
+
if not all([PINECONE_API_KEY, PINECONE_ENV, PINECONE_INDEX_NAME]):
|
53 |
+
raise ValueError("Pinecone ortam değişkenleri eksik!")
|
54 |
+
|
55 |
+
# === PINECONE CONNECT ===
|
56 |
+
pinecone_client = Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
|
57 |
+
try:
|
58 |
+
index = pinecone_client.Index(PINECONE_INDEX_NAME)
|
59 |
+
index_stats = index.describe_index_stats()
|
60 |
+
logger.info(f"Pinecone index stats: {index_stats}")
|
61 |
+
except Exception as e:
|
62 |
+
logger.error(f"Pinecone bağlantı hatası: {e}")
|
63 |
+
raise
|
64 |
+
|
65 |
+
# === MODEL LOAD ===
|
66 |
+
MODEL_PATH = "iamseyhmus7/GenerationTurkishGPT2_final"
|
67 |
+
try:
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
69 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
|
70 |
+
tokenizer.pad_token = tokenizer.eos_token
|
71 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
72 |
+
model.eval()
|
73 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
74 |
+
model.to(device)
|
75 |
+
logger.info(f"Model {MODEL_PATH} Hugging Face Hub'dan yüklendi, cihaz: {device}")
|
76 |
+
except Exception as e:
|
77 |
+
logger.error(f"Model yükleme hatası: {e}")
|
78 |
+
raise
|
79 |
+
|
80 |
+
# === EMBEDDING MODELS ===
|
81 |
+
embedder = SentenceTransformer("intfloat/multilingual-e5-large", device="cpu")
|
82 |
+
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2", device="cpu")
|
83 |
+
logger.info("Embedding ve reranking modelleri yüklendi")
|
84 |
+
|
85 |
+
# === FASTAPI ===
|
86 |
+
app = FastAPI()
|
87 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
88 |
+
app.mount("/static", StaticFiles(directory=os.path.join(BASE_DIR, "static")), name="static")
|
89 |
+
templates = Jinja2Templates(directory=os.path.join(BASE_DIR, "templates"))
|
90 |
+
|
91 |
+
class QuestionRequest(BaseModel):
|
92 |
+
query: str
|
93 |
+
|
94 |
+
def clean_text_output(text: str) -> str:
|
95 |
+
"""
|
96 |
+
Tüm prompt, komut, yönerge, link ve gereksiz açıklamaları temizler.
|
97 |
+
Sadece net, kısa yanıtı bırakır.
|
98 |
+
"""
|
99 |
+
# Modelin başındaki yönerge/talimat cümleleri
|
100 |
+
text = re.sub(
|
101 |
+
r"^(Sadece doğru, kısa ve açık bilgi ver\.? Ekstra açıklama veya kaynak ekleme\.?)",
|
102 |
+
"", text, flags=re.IGNORECASE
|
103 |
+
)
|
104 |
+
# Büyük prompt ve yönergeleri sil (Metin:, output:, Cevap:)
|
105 |
+
text = re.sub(r"^.*?(Metin:|output:|Cevap:)", "", text, flags=re.IGNORECASE | re.DOTALL)
|
106 |
+
# Tek satırlık açıklama veya yönerge kalanlarını sil
|
107 |
+
text = re.sub(r"^(Aşağıdaki haber.*|Yalnızca olay özeti.*|Cevapta sadece.*|Metin:|output:|Cevap:)", "", text, flags=re.IGNORECASE | re.MULTILINE)
|
108 |
+
# 'Detaylı bilgi için', 'Daha fazla bilgi için', 'Wikipedia', 'Kaynak:', linkler vs.
|
109 |
+
text = re.sub(r"(Detaylı bilgi için.*|Daha fazla bilgi için.*|Wikipedia.*|Kaynak:.*|https?://\S+)", "", text, flags=re.IGNORECASE)
|
110 |
+
# Madde işaretleri ve baştaki sayı/karakterler
|
111 |
+
text = re.sub(r"^\- ", "", text, flags=re.MULTILINE)
|
112 |
+
text = re.sub(r"^\d+[\.\)]?\s+", "", text, flags=re.MULTILINE)
|
113 |
+
## Model promptlarının başında kalan talimat cümlelerini sil
|
114 |
+
text = re.sub(
|
115 |
+
r"^(Sadece doğru, kısa ve açık bilgi ver\.? Ekstra açıklama veya kaynak ekleme\.?)",
|
116 |
+
"", text, flags=re.IGNORECASE
|
117 |
+
)
|
118 |
+
# Tekrarlı boşluklar ve baş/son boşluk
|
119 |
+
text = re.sub(r"\s+", " ", text).strip()
|
120 |
+
return text
|
121 |
+
|
122 |
+
@lru_cache(maxsize=config["cache"]["maxsize"])
|
123 |
+
def get_embedding(text: str, max_length: int = 512) -> np.ndarray:
|
124 |
+
formatted = f"query: {text.strip()}"[:max_length]
|
125 |
+
return embedder.encode(formatted, normalize_embeddings=True)
|
126 |
+
|
127 |
+
@lru_cache(maxsize=32)
|
128 |
+
def pinecone_query_cached(query: str, top_k: int) -> tuple:
|
129 |
+
query_embedding = get_embedding(query)
|
130 |
+
result = index.query(vector=query_embedding.tolist(), top_k=top_k, include_metadata=True)
|
131 |
+
matches = result.get("matches", [])
|
132 |
+
output = []
|
133 |
+
for m in matches:
|
134 |
+
text = m.get("metadata", {}).get("text", "").strip()
|
135 |
+
url = m.get("metadata", {}).get("url", "")
|
136 |
+
if text:
|
137 |
+
output.append((text, url))
|
138 |
+
return tuple(output)
|
139 |
+
|
140 |
+
async def retrieve_sources_from_pinecone(query: str, top_k: int = None) -> Dict[str, any]:
|
141 |
+
top_k = top_k or config["pinecone"]["top_k"]
|
142 |
+
output = pinecone_query_cached(query, top_k)
|
143 |
+
if not output:
|
144 |
+
return {"sources": "", "results": [], "source_url": ""}
|
145 |
+
# Cross-encoder ile yeniden sıralama
|
146 |
+
sentence_pairs = [[query, text] for text, url in output]
|
147 |
+
scores = await asyncio.to_thread(cross_encoder.predict, sentence_pairs)
|
148 |
+
reranked = [(float(score), text, url) for score, (text, url) in zip(scores, output)]
|
149 |
+
reranked.sort(key=lambda x: x[0], reverse=True)
|
150 |
+
top_results = reranked[:1]
|
151 |
+
top_texts = [text for _, text, _ in top_results]
|
152 |
+
source_url = top_results[0][2] if top_results else ""
|
153 |
+
return {"sources": "\n".join(top_texts), "results": top_results, "source_url": source_url}
|
154 |
+
|
155 |
+
async def generate_model_response(question: str) -> str:
|
156 |
+
prompt = (
|
157 |
+
f"input: {question}\noutput:"
|
158 |
+
"Sadece doğru, kısa ve açık bilgi ver. Ekstra açıklama veya kaynak ekleme."
|
159 |
+
)
|
160 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=256).to(device)
|
161 |
+
with torch.no_grad():
|
162 |
+
outputs = model.generate(
|
163 |
+
**inputs,
|
164 |
+
max_new_tokens=64,
|
165 |
+
do_sample=False,
|
166 |
+
num_beams=5,
|
167 |
+
no_repeat_ngram_size=3,
|
168 |
+
early_stopping=True,
|
169 |
+
pad_token_id=tokenizer.pad_token_id,
|
170 |
+
eos_token_id=tokenizer.eos_token_id
|
171 |
+
)
|
172 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
173 |
+
return answer
|
174 |
+
|
175 |
+
def extract_self_answer(output: str) -> str:
|
176 |
+
# Eğer "output:" etiketi varsa, sonrasını al
|
177 |
+
match = re.search(r"output:(.*)", output, flags=re.IGNORECASE | re.DOTALL)
|
178 |
+
if match:
|
179 |
+
return match.group(1).strip()
|
180 |
+
# Eğer "Cevap:" varsa, sonrasını al
|
181 |
+
if "Cevap:" in output:
|
182 |
+
return output.split("Cevap:")[-1].strip()
|
183 |
+
return output.strip()
|
184 |
+
|
185 |
+
async def selfrag_agent(question: str):
|
186 |
+
# 1. VDB cevabı ve kaynak url
|
187 |
+
result = await retrieve_sources_from_pinecone(question)
|
188 |
+
vdb_paragraph = result.get("sources", "").strip()
|
189 |
+
source_url = result.get("source_url", "")
|
190 |
+
|
191 |
+
# 2. Model cevabı
|
192 |
+
model_paragraph = await generate_model_response(question)
|
193 |
+
model_paragraph = extract_self_answer(model_paragraph)
|
194 |
+
|
195 |
+
# 3. Temizle (SADECE METİN DEĞERLERİNDE!)
|
196 |
+
vdb_paragraph = clean_text_output(vdb_paragraph)
|
197 |
+
model_paragraph = clean_text_output(model_paragraph)
|
198 |
+
|
199 |
+
# 4. Cross-encoder ile skorlama
|
200 |
+
candidates = []
|
201 |
+
candidate_urls = []
|
202 |
+
label_names = []
|
203 |
+
if vdb_paragraph:
|
204 |
+
candidates.append(vdb_paragraph)
|
205 |
+
candidate_urls.append(source_url)
|
206 |
+
label_names.append("VDB")
|
207 |
+
if model_paragraph:
|
208 |
+
candidates.append(model_paragraph)
|
209 |
+
candidate_urls.append(None)
|
210 |
+
label_names.append("MODEL")
|
211 |
+
|
212 |
+
if not candidates:
|
213 |
+
return {"answer": "Cevap bulunamadı.", "source_url": None}
|
214 |
+
|
215 |
+
sentence_pairs = [[question, cand] for cand in candidates]
|
216 |
+
scores = await asyncio.to_thread(cross_encoder.predict, sentence_pairs)
|
217 |
+
print(f"VDB Skor: {scores[0]:.4f}")
|
218 |
+
if len(scores) > 1:
|
219 |
+
print(f"Model Skor: {scores[1]:.4f}")
|
220 |
+
|
221 |
+
# === Seçim Kuralları ===
|
222 |
+
if len(scores) == 2:
|
223 |
+
vdb_score = scores[0]
|
224 |
+
model_score = scores[1]
|
225 |
+
# Eğer modelin skoru, VDB'nin 2 katından fazlaysa modeli döndür
|
226 |
+
if model_score > 1.5 * vdb_score:
|
227 |
+
best_idx = 1
|
228 |
+
else:
|
229 |
+
best_idx = 0
|
230 |
+
else:
|
231 |
+
# Sadece VDB veya model varsa, en yüksek skoru seç
|
232 |
+
best_idx = int(np.argmax(scores))
|
233 |
+
|
234 |
+
final_answer = candidates[best_idx]
|
235 |
+
final_source_url = candidate_urls[best_idx]
|
236 |
+
|
237 |
+
return {
|
238 |
+
"answer": final_answer,
|
239 |
+
"source_url": final_source_url
|
240 |
+
}
|
241 |
+
|
242 |
+
|
243 |
+
@app.get("/")
|
244 |
+
async def home(request: Request):
|
245 |
+
return templates.TemplateResponse("index.html", {"request": request})
|
246 |
+
|
247 |
+
@app.post("/api/ask")
|
248 |
+
async def ask_question(request: QuestionRequest):
|
249 |
+
try:
|
250 |
+
question = request.query.strip()
|
251 |
+
if not question:
|
252 |
+
return JSONResponse(status_code=400, content={"error": "Sorgu boş olamaz."})
|
253 |
+
result = await selfrag_agent(question)
|
254 |
+
response_text = result["answer"]
|
255 |
+
if result["source_url"]:
|
256 |
+
response_text += f'<br><br>Daha fazla bilgi için: <a href="{result["source_url"]}" target="_blank">{result["source_url"]}</a>'
|
257 |
+
return JSONResponse(content={"answer": response_text})
|
258 |
+
except Exception as e:
|
259 |
+
logger.error(f"API hatası: {e}")
|
260 |
+
return JSONResponse(status_code=500, content={"error": f"Sunucu hatası: {str(e)}"})
|