Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
import pathlib | |
import tempfile | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import spaces | |
import supervision as sv | |
import torch | |
import tqdm | |
from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation | |
DESCRIPTION = """ | |
# ViTPose | |
<div style="display: flex; gap: 10px;"> | |
<a href="https://huggingface.co/docs/transformers/en/model_doc/vitpose"> | |
<img src="https://img.shields.io/badge/Huggingface-FFD21E?style=flat&logo=Huggingface&logoColor=black" alt="Huggingface"> | |
</a> | |
<a href="https://arxiv.org/abs/2204.12484"> | |
<img src="https://img.shields.io/badge/Arvix-B31B1B?style=flat&logo=arXiv&logoColor=white" alt="Paper"> | |
</a> | |
<a href="https://github.com/ViTAE-Transformer/ViTPose"> | |
<img src="https://img.shields.io/badge/Github-100000?style=flat&logo=github&logoColor=white" alt="Github"> | |
</a> | |
</div> | |
ViTPose is a state-of-the-art human pose estimation model based on Vision Transformers (ViT). It employs a standard, non-hierarchical ViT backbone and a simple decoder head to predict keypoint heatmaps from images. Despite its simplicity, ViTPose achieves top results on the MS COCO Keypoint Detection benchmark. | |
ViTPose++ further improves performance with a mixture-of-experts (MoE) module and extensive pre-training. The model is scalable, flexible, and demonstrates strong transferability across pose estimation tasks. | |
**Key features:** | |
- PyTorch implementation | |
- Scalable model size (100M to 1B parameters) | |
- Flexible training and inference | |
- State-of-the-art accuracy on challenging benchmarks | |
""" | |
COLORS = [ | |
"#A351FB", | |
"#FF4040", | |
"#FFA1A0", | |
"#FF7633", | |
"#FFB633", | |
"#D1D435", | |
"#4CFB12", | |
"#94CF1A", | |
"#40DE8A", | |
"#1B9640", | |
"#00D6C1", | |
"#2E9CAA", | |
"#00C4FF", | |
"#364797", | |
"#6675FF", | |
"#0019EF", | |
"#863AFF", | |
] | |
COLORS = [sv.Color.from_hex(color_hex=c) for c in COLORS] | |
MAX_NUM_FRAMES = 300 | |
keypoint_score = 0.3 | |
enable_labels_annotator = True | |
enable_vertices_annotator = True | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
person_detector_name = "PekingU/rtdetr_r50vd_coco_o365" | |
person_image_processor = AutoProcessor.from_pretrained(person_detector_name) | |
person_model = RTDetrForObjectDetection.from_pretrained(person_detector_name, device_map=device) | |
pose_model_name = "usyd-community/vitpose-base-simple" | |
pose_image_processor = AutoProcessor.from_pretrained(pose_model_name) | |
pose_model = VitPoseForPoseEstimation.from_pretrained(pose_model_name, device_map=device) | |
def detect_pose_image( | |
image: PIL.Image.Image, | |
threshold: float = 0.3, | |
enable_labels_annotator: bool = True, | |
enable_vertices_annotator: bool = True, | |
) -> tuple[PIL.Image.Image, list[dict]]: | |
"""Detects persons and estimates their poses in a single image. | |
Args: | |
image (PIL.Image.Image): Input image in which to detect persons and estimate poses. | |
threshold (Float): Confidence threshold for pose keypoints. | |
enable_labels_annotator (bool): Whether to enable annotating labels for pose keypoints. | |
enable_vertices_annotator (bool): Whether to enable annotating vertices for pose keypoints | |
Returns: | |
tuple[PIL.Image.Image, list[dict]]: | |
- Annotated image with bounding boxes and pose keypoints drawn. | |
- List of dictionaries containing human-readable pose estimation results for each detected person. | |
""" | |
inputs = person_image_processor(images=image, return_tensors="pt").to(device) | |
outputs = person_model(**inputs) | |
results = person_image_processor.post_process_object_detection( | |
outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=threshold | |
) | |
result = results[0] # take first image results | |
detections = sv.Detections.from_transformers(result) | |
person_detections_xywh = sv.xyxy_to_xywh(detections[detections.class_id == 0].xyxy) | |
inputs = pose_image_processor(image, boxes=[person_detections_xywh], return_tensors="pt").to(device) | |
# for vitpose-plus-base checkpoint we should additionally provide dataset_index | |
# to specify which MOE experts to use for inference | |
if pose_model.config.backbone_config.num_experts > 1: | |
dataset_index = torch.tensor([0] * len(inputs["pixel_values"])) | |
dataset_index = dataset_index.to(inputs["pixel_values"].device) | |
inputs["dataset_index"] = dataset_index | |
outputs = pose_model(**inputs) | |
pose_results = pose_image_processor.post_process_pose_estimation(outputs, boxes=[person_detections_xywh]) | |
image_pose_result = pose_results[0] # results for first image | |
# make results more human-readable | |
human_readable_results = [] | |
person_pose_labels = [] | |
for i, person_pose in enumerate(image_pose_result): | |
data = { | |
"person_id": i, | |
"bbox": person_pose["bbox"].numpy().tolist(), | |
"keypoints": [], | |
} | |
for keypoint, label, score in zip( | |
person_pose["keypoints"], person_pose["labels"], person_pose["scores"], strict=True | |
): | |
keypoint_name = pose_model.config.id2label[label.item()] | |
person_pose_labels.append(keypoint_name) | |
x, y = keypoint | |
data["keypoints"].append({"name": keypoint_name, "x": x.item(), "y": y.item(), "score": score.item()}) | |
human_readable_results.append(data) | |
line_thickness = sv.calculate_optimal_line_thickness(resolution_wh=(image.width, image.height)) | |
text_scale = sv.calculate_optimal_text_scale(resolution_wh=(image.width, image.height)) | |
edge_annotator = sv.EdgeAnnotator(color=sv.Color.WHITE, thickness=line_thickness) | |
vertex_annotator = sv.VertexAnnotator(color=sv.Color.BLUE, radius=3) | |
box_annotator = sv.BoxAnnotator(color=sv.Color.WHITE, color_lookup=sv.ColorLookup.INDEX, thickness=3) | |
vertex_label_annotator = sv.VertexLabelAnnotator( | |
color=COLORS, smart_position=True, border_radius=3, text_thickness=2, text_scale=text_scale | |
) | |
annotated_frame = box_annotator.annotate(scene=image.copy(), detections=detections) | |
for _, person_pose in enumerate(image_pose_result): | |
person_keypoints = sv.KeyPoints.from_transformers([person_pose]) | |
person_labels = [pose_model.config.id2label[label.item()] for label in person_pose["labels"]] | |
# annotate edges and vertices for this person | |
annotated_frame = edge_annotator.annotate(scene=annotated_frame, key_points=person_keypoints) | |
# annotate labels for this person | |
if enable_labels_annotator: | |
annotated_frame = vertex_label_annotator.annotate( | |
scene=np.array(annotated_frame), key_points=person_keypoints, labels=person_labels | |
) | |
# annotate vertices for this person | |
if enable_vertices_annotator: | |
annotated_frame = vertex_annotator.annotate(scene=annotated_frame, key_points=person_keypoints) | |
return annotated_frame, human_readable_results | |
# Decorate this function with `@spaces.GPU` to ensure that ZeroGPU is allocated once for the entire video processing. | |
# Although `detect_pose_image` (called per frame) is already decorated, without this decorator, ZeroGPU would be invoked for each frame, | |
# causing significant overhead and slowdowns. By decorating this function, all frames are processed sequentially after a single GPU allocation. | |
def detect_pose_video( | |
video_path: str, | |
threshold: float, | |
enable_labels_annotator: bool = True, | |
enable_vertices_annotator: bool = True, | |
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008 | |
) -> str: | |
"""Detects persons and estimates their poses for each frame in a video, saving the annotated video. | |
Args: | |
video_path (str): Path to the input video file. | |
threshold (Float): Confidence threshold for pose keypoints. | |
enable_labels_annotator (bool): Whether to enable annotating labels for pose keypoints. | |
enable_vertices_annotator (bool): Whether to enable annotating vertices for pose keypoints. | |
progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True). | |
Returns: | |
str: Path to the output video file with annotated bounding boxes and pose keypoints. | |
""" | |
cap = cv2.VideoCapture(video_path) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as out_file: | |
writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height)) | |
for _ in tqdm.auto.tqdm(range(min(MAX_NUM_FRAMES, num_frames))): | |
ok, frame = cap.read() | |
if not ok: | |
break | |
rgb_frame = frame[:, :, ::-1] | |
annotated_frame, _ = detect_pose_image( | |
PIL.Image.fromarray(rgb_frame), | |
threshold=threshold, | |
enable_labels_annotator=enable_labels_annotator, | |
enable_vertices_annotator=enable_vertices_annotator, | |
) | |
writer.write(np.asarray(annotated_frame)[:, :, ::-1]) | |
writer.release() | |
cap.release() | |
return out_file.name | |
with gr.Blocks(css_paths="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
keypoint_score = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.6, | |
step=0.01, | |
info="Adjust the confidence threshold for keypoint detection.", | |
label="Keypoint Score Threshold", | |
) | |
enable_labels_annotator = gr.Checkbox(interactive=True, value=True, label="Enable Labels") | |
enable_vertices_annotator = gr.Checkbox(interactive=True, value=True, label="Enable Vertices") | |
with gr.Tabs(): | |
with gr.Tab("Image"): | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input Image", type="pil") | |
run_button_image = gr.Button() | |
with gr.Column(): | |
output_image = gr.Image(label="Output Image") | |
output_json = gr.JSON(label="Output JSON") | |
gr.Examples( | |
examples=[[str(img), 0.5, True, True] for img in sorted(pathlib.Path("images").glob("*.jpg"))], | |
inputs=[input_image, keypoint_score, enable_labels_annotator, enable_vertices_annotator], | |
outputs=[output_image, output_json], | |
fn=detect_pose_image, | |
) | |
run_button_image.click( | |
fn=detect_pose_image, | |
inputs=[input_image, keypoint_score, enable_labels_annotator, enable_vertices_annotator], | |
outputs=[output_image, output_json], | |
) | |
with gr.Tab("Video"): | |
gr.Markdown(f"The input video will be truncated to {MAX_NUM_FRAMES} frames.") | |
with gr.Row(): | |
with gr.Column(): | |
input_video = gr.Video(label="Input Video") | |
run_button_video = gr.Button() | |
with gr.Column(): | |
output_video = gr.Video(label="Output Video") | |
gr.Examples( | |
examples=[[str(video), 0.5, True, True] for video in sorted(pathlib.Path("videos").glob("*.mp4"))], | |
inputs=[input_video, keypoint_score, enable_labels_annotator, enable_vertices_annotator], | |
outputs=output_video, | |
fn=detect_pose_video, | |
cache_examples=False, | |
) | |
run_button_video.click( | |
fn=detect_pose_video, | |
inputs=[input_video, keypoint_score, enable_labels_annotator, enable_vertices_annotator], | |
outputs=output_video, | |
) | |
if __name__ == "__main__": | |
demo.launch(mcp_server=True, ssr_mode=False) | |