File size: 12,042 Bytes
82b20ab
 
 
3c574ec
82b20ab
3c574ec
82b20ab
3c574ec
82b20ab
 
 
 
3c574ec
82b20ab
 
c084355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82b20ab
3c574ec
 
c084355
 
 
 
 
82b20ab
 
 
 
 
 
 
 
 
 
 
662c4db
82b20ab
c084355
 
 
 
 
 
55b540a
 
 
 
c084355
 
 
55b540a
 
 
 
 
 
82b20ab
 
 
c084355
82b20ab
 
 
c084355
 
82b20ab
c084355
82b20ab
b31249e
2c6d023
82b20ab
 
 
 
 
 
 
c084355
82b20ab
 
 
 
c084355
82b20ab
 
 
 
 
 
 
 
 
 
c084355
82b20ab
 
 
 
c084355
 
82b20ab
c084355
 
 
82b20ab
c084355
 
 
82b20ab
c084355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82b20ab
c084355
82b20ab
 
ec1468b
 
 
 
55b540a
3c574ec
c084355
 
 
3c574ec
 
55b540a
 
 
 
c084355
 
 
55b540a
 
 
 
 
3c574ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c084355
 
 
 
 
 
3c574ec
 
 
 
 
 
82b20ab
 
3c574ec
c084355
 
 
 
 
 
 
 
 
 
 
3c574ec
 
 
 
 
 
 
 
 
 
c084355
 
3c574ec
55b540a
3c574ec
 
 
55b540a
c084355
3c574ec
 
 
 
 
 
 
 
 
 
 
 
 
 
c084355
 
3c574ec
55b540a
3c574ec
 
 
55b540a
c084355
3c574ec
 
82b20ab
 
 
c36d0ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python

import pathlib
import tempfile

import cv2
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import supervision as sv
import torch
import tqdm
from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation

DESCRIPTION = """
# ViTPose

<div style="display: flex; gap: 10px;">
    <a href="https://huggingface.co/docs/transformers/en/model_doc/vitpose">
        <img src="https://img.shields.io/badge/Huggingface-FFD21E?style=flat&logo=Huggingface&logoColor=black" alt="Huggingface">
    </a>
    <a href="https://arxiv.org/abs/2204.12484">
        <img src="https://img.shields.io/badge/Arvix-B31B1B?style=flat&logo=arXiv&logoColor=white" alt="Paper">
    </a>
    <a href="https://github.com/ViTAE-Transformer/ViTPose">
        <img src="https://img.shields.io/badge/Github-100000?style=flat&logo=github&logoColor=white" alt="Github">
    </a>
</div>

ViTPose is a state-of-the-art human pose estimation model based on Vision Transformers (ViT). It employs a standard, non-hierarchical ViT backbone and a simple decoder head to predict keypoint heatmaps from images. Despite its simplicity, ViTPose achieves top results on the MS COCO Keypoint Detection benchmark.

ViTPose++ further improves performance with a mixture-of-experts (MoE) module and extensive pre-training. The model is scalable, flexible, and demonstrates strong transferability across pose estimation tasks.

**Key features:**
- PyTorch implementation
- Scalable model size (100M to 1B parameters)
- Flexible training and inference
- State-of-the-art accuracy on challenging benchmarks

"""


COLORS = [
    "#A351FB",
    "#FF4040",
    "#FFA1A0",
    "#FF7633",
    "#FFB633",
    "#D1D435",
    "#4CFB12",
    "#94CF1A",
    "#40DE8A",
    "#1B9640",
    "#00D6C1",
    "#2E9CAA",
    "#00C4FF",
    "#364797",
    "#6675FF",
    "#0019EF",
    "#863AFF",
]
COLORS = [sv.Color.from_hex(color_hex=c) for c in COLORS]

MAX_NUM_FRAMES = 300

keypoint_score = 0.3
enable_labels_annotator = True
enable_vertices_annotator = True


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

person_detector_name = "PekingU/rtdetr_r50vd_coco_o365"
person_image_processor = AutoProcessor.from_pretrained(person_detector_name)
person_model = RTDetrForObjectDetection.from_pretrained(person_detector_name, device_map=device)

pose_model_name = "usyd-community/vitpose-base-simple"
pose_image_processor = AutoProcessor.from_pretrained(pose_model_name)
pose_model = VitPoseForPoseEstimation.from_pretrained(pose_model_name, device_map=device)


@spaces.GPU(duration=5)
@torch.inference_mode()
def detect_pose_image(
    image: PIL.Image.Image,
    threshold: float = 0.3,
    enable_labels_annotator: bool = True,
    enable_vertices_annotator: bool = True,
) -> tuple[PIL.Image.Image, list[dict]]:
    """Detects persons and estimates their poses in a single image.

    Args:
        image (PIL.Image.Image): Input image in which to detect persons and estimate poses.
        threshold (Float): Confidence threshold for pose keypoints.
        enable_labels_annotator (bool): Whether to enable annotating labels for pose keypoints.
        enable_vertices_annotator (bool): Whether to enable annotating vertices for pose keypoints

    Returns:
        tuple[PIL.Image.Image, list[dict]]:
            - Annotated image with bounding boxes and pose keypoints drawn.
            - List of dictionaries containing human-readable pose estimation results for each detected person.
    """
    inputs = person_image_processor(images=image, return_tensors="pt").to(device)
    outputs = person_model(**inputs)
    results = person_image_processor.post_process_object_detection(
        outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=threshold
    )
    result = results[0]  # take first image results

    detections = sv.Detections.from_transformers(result)
    person_detections_xywh = sv.xyxy_to_xywh(detections[detections.class_id == 0].xyxy)

    inputs = pose_image_processor(image, boxes=[person_detections_xywh], return_tensors="pt").to(device)

    # for vitpose-plus-base checkpoint we should additionally provide dataset_index
    # to specify which MOE experts to use for inference
    if pose_model.config.backbone_config.num_experts > 1:
        dataset_index = torch.tensor([0] * len(inputs["pixel_values"]))
        dataset_index = dataset_index.to(inputs["pixel_values"].device)
        inputs["dataset_index"] = dataset_index

    outputs = pose_model(**inputs)

    pose_results = pose_image_processor.post_process_pose_estimation(outputs, boxes=[person_detections_xywh])
    image_pose_result = pose_results[0]  # results for first image

    # make results more human-readable
    human_readable_results = []
    person_pose_labels = []
    for i, person_pose in enumerate(image_pose_result):
        data = {
            "person_id": i,
            "bbox": person_pose["bbox"].numpy().tolist(),
            "keypoints": [],
        }
        for keypoint, label, score in zip(
            person_pose["keypoints"], person_pose["labels"], person_pose["scores"], strict=True
        ):
            keypoint_name = pose_model.config.id2label[label.item()]
            person_pose_labels.append(keypoint_name)
            x, y = keypoint
            data["keypoints"].append({"name": keypoint_name, "x": x.item(), "y": y.item(), "score": score.item()})
        human_readable_results.append(data)

    line_thickness = sv.calculate_optimal_line_thickness(resolution_wh=(image.width, image.height))
    text_scale = sv.calculate_optimal_text_scale(resolution_wh=(image.width, image.height))

    edge_annotator = sv.EdgeAnnotator(color=sv.Color.WHITE, thickness=line_thickness)
    vertex_annotator = sv.VertexAnnotator(color=sv.Color.BLUE, radius=3)
    box_annotator = sv.BoxAnnotator(color=sv.Color.WHITE, color_lookup=sv.ColorLookup.INDEX, thickness=3)

    vertex_label_annotator = sv.VertexLabelAnnotator(
        color=COLORS, smart_position=True, border_radius=3, text_thickness=2, text_scale=text_scale
    )

    annotated_frame = box_annotator.annotate(scene=image.copy(), detections=detections)

    for _, person_pose in enumerate(image_pose_result):
        person_keypoints = sv.KeyPoints.from_transformers([person_pose])
        person_labels = [pose_model.config.id2label[label.item()] for label in person_pose["labels"]]
        # annotate edges and vertices for this person
        annotated_frame = edge_annotator.annotate(scene=annotated_frame, key_points=person_keypoints)
        # annotate labels for this person
        if enable_labels_annotator:
            annotated_frame = vertex_label_annotator.annotate(
                scene=np.array(annotated_frame), key_points=person_keypoints, labels=person_labels
            )
        # annotate vertices for this person
        if enable_vertices_annotator:
            annotated_frame = vertex_annotator.annotate(scene=annotated_frame, key_points=person_keypoints)

    return annotated_frame, human_readable_results


# Decorate this function with `@spaces.GPU` to ensure that ZeroGPU is allocated once for the entire video processing.
# Although `detect_pose_image` (called per frame) is already decorated, without this decorator, ZeroGPU would be invoked for each frame,
# causing significant overhead and slowdowns. By decorating this function, all frames are processed sequentially after a single GPU allocation.
@spaces.GPU(duration=90)
def detect_pose_video(
    video_path: str,
    threshold: float,
    enable_labels_annotator: bool = True,
    enable_vertices_annotator: bool = True,
    progress: gr.Progress = gr.Progress(track_tqdm=True),  # noqa: ARG001, B008
) -> str:
    """Detects persons and estimates their poses for each frame in a video, saving the annotated video.

    Args:
        video_path (str): Path to the input video file.
        threshold (Float): Confidence threshold for pose keypoints.
        enable_labels_annotator (bool): Whether to enable annotating labels for pose keypoints.
        enable_vertices_annotator (bool): Whether to enable annotating vertices for pose keypoints.
        progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).

    Returns:
        str: Path to the output video file with annotated bounding boxes and pose keypoints.
    """
    cap = cv2.VideoCapture(video_path)

    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    fps = cap.get(cv2.CAP_PROP_FPS)
    num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as out_file:
        writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height))
        for _ in tqdm.auto.tqdm(range(min(MAX_NUM_FRAMES, num_frames))):
            ok, frame = cap.read()
            if not ok:
                break
            rgb_frame = frame[:, :, ::-1]
            annotated_frame, _ = detect_pose_image(
                PIL.Image.fromarray(rgb_frame),
                threshold=threshold,
                enable_labels_annotator=enable_labels_annotator,
                enable_vertices_annotator=enable_vertices_annotator,
            )
            writer.write(np.asarray(annotated_frame)[:, :, ::-1])
        writer.release()
    cap.release()
    return out_file.name


with gr.Blocks(css_paths="style.css") as demo:
    gr.Markdown(DESCRIPTION)

    keypoint_score = gr.Slider(
        minimum=0.0,
        maximum=1.0,
        value=0.6,
        step=0.01,
        info="Adjust the confidence threshold for keypoint detection.",
        label="Keypoint Score Threshold",
    )
    enable_labels_annotator = gr.Checkbox(interactive=True, value=True, label="Enable Labels")
    enable_vertices_annotator = gr.Checkbox(interactive=True, value=True, label="Enable Vertices")

    with gr.Tabs():
        with gr.Tab("Image"):
            with gr.Row():
                with gr.Column():
                    input_image = gr.Image(label="Input Image", type="pil")
                    run_button_image = gr.Button()
                with gr.Column():
                    output_image = gr.Image(label="Output Image")
                    output_json = gr.JSON(label="Output JSON")
            gr.Examples(
                examples=[[str(img), 0.5, True, True] for img in sorted(pathlib.Path("images").glob("*.jpg"))],
                inputs=[input_image, keypoint_score, enable_labels_annotator, enable_vertices_annotator],
                outputs=[output_image, output_json],
                fn=detect_pose_image,
            )

            run_button_image.click(
                fn=detect_pose_image,
                inputs=[input_image, keypoint_score, enable_labels_annotator, enable_vertices_annotator],
                outputs=[output_image, output_json],
            )

        with gr.Tab("Video"):
            gr.Markdown(f"The input video will be truncated to {MAX_NUM_FRAMES} frames.")

            with gr.Row():
                with gr.Column():
                    input_video = gr.Video(label="Input Video")
                    run_button_video = gr.Button()
                with gr.Column():
                    output_video = gr.Video(label="Output Video")

            gr.Examples(
                examples=[[str(video), 0.5, True, True] for video in sorted(pathlib.Path("videos").glob("*.mp4"))],
                inputs=[input_video, keypoint_score, enable_labels_annotator, enable_vertices_annotator],
                outputs=output_video,
                fn=detect_pose_video,
                cache_examples=False,
            )
            run_button_video.click(
                fn=detect_pose_video,
                inputs=[input_video, keypoint_score, enable_labels_annotator, enable_vertices_annotator],
                outputs=output_video,
            )


if __name__ == "__main__":
    demo.launch(mcp_server=True, ssr_mode=False)