Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,042 Bytes
82b20ab 3c574ec 82b20ab 3c574ec 82b20ab 3c574ec 82b20ab 3c574ec 82b20ab c084355 82b20ab 3c574ec c084355 82b20ab 662c4db 82b20ab c084355 55b540a c084355 55b540a 82b20ab c084355 82b20ab c084355 82b20ab c084355 82b20ab b31249e 2c6d023 82b20ab c084355 82b20ab c084355 82b20ab c084355 82b20ab c084355 82b20ab c084355 82b20ab c084355 82b20ab c084355 82b20ab c084355 82b20ab ec1468b 55b540a 3c574ec c084355 3c574ec 55b540a c084355 55b540a 3c574ec c084355 3c574ec 82b20ab 3c574ec c084355 3c574ec c084355 3c574ec 55b540a 3c574ec 55b540a c084355 3c574ec c084355 3c574ec 55b540a 3c574ec 55b540a c084355 3c574ec 82b20ab c36d0ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
#!/usr/bin/env python
import pathlib
import tempfile
import cv2
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import supervision as sv
import torch
import tqdm
from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation
DESCRIPTION = """
# ViTPose
<div style="display: flex; gap: 10px;">
<a href="https://huggingface.co/docs/transformers/en/model_doc/vitpose">
<img src="https://img.shields.io/badge/Huggingface-FFD21E?style=flat&logo=Huggingface&logoColor=black" alt="Huggingface">
</a>
<a href="https://arxiv.org/abs/2204.12484">
<img src="https://img.shields.io/badge/Arvix-B31B1B?style=flat&logo=arXiv&logoColor=white" alt="Paper">
</a>
<a href="https://github.com/ViTAE-Transformer/ViTPose">
<img src="https://img.shields.io/badge/Github-100000?style=flat&logo=github&logoColor=white" alt="Github">
</a>
</div>
ViTPose is a state-of-the-art human pose estimation model based on Vision Transformers (ViT). It employs a standard, non-hierarchical ViT backbone and a simple decoder head to predict keypoint heatmaps from images. Despite its simplicity, ViTPose achieves top results on the MS COCO Keypoint Detection benchmark.
ViTPose++ further improves performance with a mixture-of-experts (MoE) module and extensive pre-training. The model is scalable, flexible, and demonstrates strong transferability across pose estimation tasks.
**Key features:**
- PyTorch implementation
- Scalable model size (100M to 1B parameters)
- Flexible training and inference
- State-of-the-art accuracy on challenging benchmarks
"""
COLORS = [
"#A351FB",
"#FF4040",
"#FFA1A0",
"#FF7633",
"#FFB633",
"#D1D435",
"#4CFB12",
"#94CF1A",
"#40DE8A",
"#1B9640",
"#00D6C1",
"#2E9CAA",
"#00C4FF",
"#364797",
"#6675FF",
"#0019EF",
"#863AFF",
]
COLORS = [sv.Color.from_hex(color_hex=c) for c in COLORS]
MAX_NUM_FRAMES = 300
keypoint_score = 0.3
enable_labels_annotator = True
enable_vertices_annotator = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
person_detector_name = "PekingU/rtdetr_r50vd_coco_o365"
person_image_processor = AutoProcessor.from_pretrained(person_detector_name)
person_model = RTDetrForObjectDetection.from_pretrained(person_detector_name, device_map=device)
pose_model_name = "usyd-community/vitpose-base-simple"
pose_image_processor = AutoProcessor.from_pretrained(pose_model_name)
pose_model = VitPoseForPoseEstimation.from_pretrained(pose_model_name, device_map=device)
@spaces.GPU(duration=5)
@torch.inference_mode()
def detect_pose_image(
image: PIL.Image.Image,
threshold: float = 0.3,
enable_labels_annotator: bool = True,
enable_vertices_annotator: bool = True,
) -> tuple[PIL.Image.Image, list[dict]]:
"""Detects persons and estimates their poses in a single image.
Args:
image (PIL.Image.Image): Input image in which to detect persons and estimate poses.
threshold (Float): Confidence threshold for pose keypoints.
enable_labels_annotator (bool): Whether to enable annotating labels for pose keypoints.
enable_vertices_annotator (bool): Whether to enable annotating vertices for pose keypoints
Returns:
tuple[PIL.Image.Image, list[dict]]:
- Annotated image with bounding boxes and pose keypoints drawn.
- List of dictionaries containing human-readable pose estimation results for each detected person.
"""
inputs = person_image_processor(images=image, return_tensors="pt").to(device)
outputs = person_model(**inputs)
results = person_image_processor.post_process_object_detection(
outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=threshold
)
result = results[0] # take first image results
detections = sv.Detections.from_transformers(result)
person_detections_xywh = sv.xyxy_to_xywh(detections[detections.class_id == 0].xyxy)
inputs = pose_image_processor(image, boxes=[person_detections_xywh], return_tensors="pt").to(device)
# for vitpose-plus-base checkpoint we should additionally provide dataset_index
# to specify which MOE experts to use for inference
if pose_model.config.backbone_config.num_experts > 1:
dataset_index = torch.tensor([0] * len(inputs["pixel_values"]))
dataset_index = dataset_index.to(inputs["pixel_values"].device)
inputs["dataset_index"] = dataset_index
outputs = pose_model(**inputs)
pose_results = pose_image_processor.post_process_pose_estimation(outputs, boxes=[person_detections_xywh])
image_pose_result = pose_results[0] # results for first image
# make results more human-readable
human_readable_results = []
person_pose_labels = []
for i, person_pose in enumerate(image_pose_result):
data = {
"person_id": i,
"bbox": person_pose["bbox"].numpy().tolist(),
"keypoints": [],
}
for keypoint, label, score in zip(
person_pose["keypoints"], person_pose["labels"], person_pose["scores"], strict=True
):
keypoint_name = pose_model.config.id2label[label.item()]
person_pose_labels.append(keypoint_name)
x, y = keypoint
data["keypoints"].append({"name": keypoint_name, "x": x.item(), "y": y.item(), "score": score.item()})
human_readable_results.append(data)
line_thickness = sv.calculate_optimal_line_thickness(resolution_wh=(image.width, image.height))
text_scale = sv.calculate_optimal_text_scale(resolution_wh=(image.width, image.height))
edge_annotator = sv.EdgeAnnotator(color=sv.Color.WHITE, thickness=line_thickness)
vertex_annotator = sv.VertexAnnotator(color=sv.Color.BLUE, radius=3)
box_annotator = sv.BoxAnnotator(color=sv.Color.WHITE, color_lookup=sv.ColorLookup.INDEX, thickness=3)
vertex_label_annotator = sv.VertexLabelAnnotator(
color=COLORS, smart_position=True, border_radius=3, text_thickness=2, text_scale=text_scale
)
annotated_frame = box_annotator.annotate(scene=image.copy(), detections=detections)
for _, person_pose in enumerate(image_pose_result):
person_keypoints = sv.KeyPoints.from_transformers([person_pose])
person_labels = [pose_model.config.id2label[label.item()] for label in person_pose["labels"]]
# annotate edges and vertices for this person
annotated_frame = edge_annotator.annotate(scene=annotated_frame, key_points=person_keypoints)
# annotate labels for this person
if enable_labels_annotator:
annotated_frame = vertex_label_annotator.annotate(
scene=np.array(annotated_frame), key_points=person_keypoints, labels=person_labels
)
# annotate vertices for this person
if enable_vertices_annotator:
annotated_frame = vertex_annotator.annotate(scene=annotated_frame, key_points=person_keypoints)
return annotated_frame, human_readable_results
# Decorate this function with `@spaces.GPU` to ensure that ZeroGPU is allocated once for the entire video processing.
# Although `detect_pose_image` (called per frame) is already decorated, without this decorator, ZeroGPU would be invoked for each frame,
# causing significant overhead and slowdowns. By decorating this function, all frames are processed sequentially after a single GPU allocation.
@spaces.GPU(duration=90)
def detect_pose_video(
video_path: str,
threshold: float,
enable_labels_annotator: bool = True,
enable_vertices_annotator: bool = True,
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008
) -> str:
"""Detects persons and estimates their poses for each frame in a video, saving the annotated video.
Args:
video_path (str): Path to the input video file.
threshold (Float): Confidence threshold for pose keypoints.
enable_labels_annotator (bool): Whether to enable annotating labels for pose keypoints.
enable_vertices_annotator (bool): Whether to enable annotating vertices for pose keypoints.
progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
Returns:
str: Path to the output video file with annotated bounding boxes and pose keypoints.
"""
cap = cv2.VideoCapture(video_path)
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
fps = cap.get(cv2.CAP_PROP_FPS)
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as out_file:
writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height))
for _ in tqdm.auto.tqdm(range(min(MAX_NUM_FRAMES, num_frames))):
ok, frame = cap.read()
if not ok:
break
rgb_frame = frame[:, :, ::-1]
annotated_frame, _ = detect_pose_image(
PIL.Image.fromarray(rgb_frame),
threshold=threshold,
enable_labels_annotator=enable_labels_annotator,
enable_vertices_annotator=enable_vertices_annotator,
)
writer.write(np.asarray(annotated_frame)[:, :, ::-1])
writer.release()
cap.release()
return out_file.name
with gr.Blocks(css_paths="style.css") as demo:
gr.Markdown(DESCRIPTION)
keypoint_score = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.6,
step=0.01,
info="Adjust the confidence threshold for keypoint detection.",
label="Keypoint Score Threshold",
)
enable_labels_annotator = gr.Checkbox(interactive=True, value=True, label="Enable Labels")
enable_vertices_annotator = gr.Checkbox(interactive=True, value=True, label="Enable Vertices")
with gr.Tabs():
with gr.Tab("Image"):
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
run_button_image = gr.Button()
with gr.Column():
output_image = gr.Image(label="Output Image")
output_json = gr.JSON(label="Output JSON")
gr.Examples(
examples=[[str(img), 0.5, True, True] for img in sorted(pathlib.Path("images").glob("*.jpg"))],
inputs=[input_image, keypoint_score, enable_labels_annotator, enable_vertices_annotator],
outputs=[output_image, output_json],
fn=detect_pose_image,
)
run_button_image.click(
fn=detect_pose_image,
inputs=[input_image, keypoint_score, enable_labels_annotator, enable_vertices_annotator],
outputs=[output_image, output_json],
)
with gr.Tab("Video"):
gr.Markdown(f"The input video will be truncated to {MAX_NUM_FRAMES} frames.")
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video")
run_button_video = gr.Button()
with gr.Column():
output_video = gr.Video(label="Output Video")
gr.Examples(
examples=[[str(video), 0.5, True, True] for video in sorted(pathlib.Path("videos").glob("*.mp4"))],
inputs=[input_video, keypoint_score, enable_labels_annotator, enable_vertices_annotator],
outputs=output_video,
fn=detect_pose_video,
cache_examples=False,
)
run_button_video.click(
fn=detect_pose_video,
inputs=[input_video, keypoint_score, enable_labels_annotator, enable_vertices_annotator],
outputs=output_video,
)
if __name__ == "__main__":
demo.launch(mcp_server=True, ssr_mode=False)
|